• Title/Summary/Keyword: Temperature difference energy

Search Result 1,108, Processing Time 0.033 seconds

The Efficiency Characteristics of Electric Vehicle (EV) According to the Diverse Driving Modes and Test Conditions (다양한 주행모드 및 시험 조건에 따른 전기자동차 효율 특성)

  • LEE, MIN-HO;KIM, SUNG-WOO;KIM, KI-HO
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Although most electricity production contributes to air pollution, the vehicle organizations and environmental agency categorizes all EVs as zero-emission vehicles because they produce no direct exhaust or emissions. Currently available EVs have a shorter range per charge than most conventional vehicles have per tank of gas. EVs manufacturers typically target a range of 160 km over on a fully charged battery. The energy efficiency and driving range of EVs varies substantially based on driving conditions and driving habits. Extreme outside temperatures tend to reduce range, because more energy must be used to heat or cool the cabin. High driving speeds reduce range because of the energy required to overcome increased drag. Compared with gradual acceleration, rapid acceleration reduces range. Additional devices significant inclines also reduces range. Based on these driving modes and climate conditions, this paper discusses the performance characteristics of EVs on energy efficiency and driving range. Test vehicles were divided by low / high-speed EVs. The difference of test vehicles are on the vehicle speed and size. Low-speed EVs is a denomination for battery EVs that are legally limited to roads with posted speed limits as high as 72 km/h depending on the particular laws, usually are built to have a top speed of 60 km/h, and have a maximum loaded weight of 1,400 kg. Each vehicle test was performed according to the driving modes and test temperature ($-25^{\circ}C{\sim}35^{\circ}C$). It has a great influence on fuel efficiency amd driving distance according to test temperature conditions.

Heating and Cooling Performance Analysis of Ground Source Heat Pump System in Low Energy House (저에너지주택의 지열히트펌프시스템 냉·난방 성능분석)

  • Baek, Namchoon;Kim, Sungbum;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.387-393
    • /
    • 2016
  • A ground source heat pump system maintains a constant efficiency due to its stable heat source and radiant heat temperature which provide a more effective thermal performance than that of the air source heat pump system. As an eco-friendly renewable energy source, it can reduce electric power and carbon dioxide. In this study, we analyzed one year of data from a web based remote monitoring system to estimate the thermal performance of GSHP with the capacity of 3RT, which is installed in a low energy house located in Daejeon, Korea. This GSHP system is a hybrid system connected to a solar hot water system. Cold and hot water stored in a buffer tank is supplied to six ceiling cassette type fan coil units and a floor panel heating system installed in each room. The results are as follows. First, the GSHP system was operated for ten minutes intermittently in summer in order to decrease the heat load caused by super-insulation. Second, the energy consumption in winter where the system was operated throughout the entire day was 7.5 times higher than that in summer. Moreover, the annual COP of the heating and cooling system was 4.1 in summer and 4.2 in winter, showing little difference. Third, the outlet temperature of the ground heat exchanger in winter decreased from $13^{\circ}C$ in November to $9^{\circ}C$ in February, while that in summer increased from $14^{\circ}C$ to $17^{\circ}C$ showing that the temperature change in winter is greater than that in summer.

Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems (온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향)

  • Jeon, Sam-Chae;Li, Chang-Su;Na, Su-Yeun;Huh, Jong-Chul;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.

Tc and Jc distribution in in situ processed MgB2 bulk superconductors with/without C doping

  • Kim, C.J.;Kim, Y.J.;Lim, C.Y.;Jun, B.H.;Park, S.D.;Choo, K.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.36-41
    • /
    • 2014
  • Temperature dependence of magnetic moment (m-T) and the magnetization (M-H) at 5 K and 20 K of the in situ processed $MgB_2$ bulk pellets with/without carbon (C) doping were examined. The superconducting critical temperature ($T_c$), the superconducting transition width (${\delta}T$) and the critical current density ($J_c$) were estimated for ten test samples taken from the $MgB_2$ bulk pellets. The reliable m-T characteristics associated with the uniform $MgB_2$ formation were obtained for both $MgB_2$ pellets. The $T_cs$ and ${\delta}Ts$ of all test samples of the undoped $MgB_2$ were the same each other as 37.5 K and 1.5 K, respectively. The $T_cs$ and ${\delta}Ts$ of the C-doped $MgB_2$ were 36.5 K and 2.5 K, respectively. Unlike the m-T characteristics, there existed the difference among the M-H curves of the test samples, which might be caused by the microstructure variation. In spite of the slight $T_c$ decrease, the C doping was effective in enhancing the $J_c$ at 5 K.

Analysis on Activation Energy Measurement and Application of Nuclear Equipment Non-metallic Materials (원전기기 비금속재료의 활성화에너지 측정 및 적용성 분석)

  • Bhang, Keug-Jin;Hong, Jun-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.38-43
    • /
    • 2016
  • Safety-related equipments of Nuclear Power Plants(NPP) have to perform environmental qualification test in accordance with IEEE-323 standards. However, non-metallic materials replace new one regularly instead of the test because they are considered as consumable parts. In this study, the seven kinds of non-metallic materials are selected and their activation energy was experimentally evaluated with uncertainty analysis by using thermogravimetric analyzer(TGA). In order to obtain activation energy of non-metallic materials, mass difference, temperature raising rate and conversion rate on the specimen are analyzed. It is postulated that the three experiment conditions are important to get a reliable activation energy. This postulate was experimentally confirmed using Arrhenius equation and Flynn-Wall-Ozawa analysis.

The effect of wast heat-electric energy conversion using a thermoelectric module (열전소자를 이용한 폐열의 전기에너지 변환 효과)

  • Baek, In-Su;Bang, Min-Seo;Kim, Dae-Hyun;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.246-246
    • /
    • 2010
  • In this study, the effect of wast heat-electric energy conversion according to temperature difference between two sides of a thermoelectric module was investigated as a way of electric energy conversion from waste heat generated in machinery system like automobile system.

  • PDF

A Comparison of Constant Current and Constant Voltage Control in LED Driver (LED driver에서의 정전류 및 정전압 제어의 비교 연구)

  • Han, Soo-Bin;Park, Suck-In;Jung, Hak-Kun;Song, Eu-Gine;Jung, Bong-Man
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.83-84
    • /
    • 2010
  • This paper reviews the performance difference between constant voltage control and constant current control in LED driver. Simulations of both control methods are performed for performance comparison especially with temperature variation. The results show that constant current control method is inherently better than constant voltage control for LED drive.

  • PDF

Mechanical Milling of Lithium with Metal Oxide and its Reactivity with Gases

  • Yokoi, Tomomichi;Yamasue, Eiji;Okumura, Hideyuki;Ishihara, Keiichi N.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.959-960
    • /
    • 2006
  • Li reacts with $N_2$ at room temperature. In order to activate Li, the mechanical milling of Li with stable metal oxide, namely, $Al_2O_3$ and MgO, using a high energy vibrating ball mill was performed. In the case of Li-MgO system, it reacts with $N_2$, but hardly reacts with $O_2$. The reaction with $N_2$ generally produces $Li_3N$, while for some vigorous reactions the $Mg_3N_2$ is produced as the major phases. In the case of $Li-Al_2O_3$ system, reactivities with both $N_2$ and $O_2$ are high. The difference is explained in terms of the reaction mechanism and the Li state.

  • PDF

NATURAL CONVECTION AROUND A HEAT CONDUCTING AND GENERATING SOLID BODY INSIDE A SQUARE ENCLOSURE WITH DIFFERENT THERMAL BOUNDARIES

  • NITHYADEVI, NAGARAJAN;UMADEVI, PERIYASAMY
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.459-479
    • /
    • 2015
  • Two-dimensional steady laminar natural convection around a heat conducting and generating solid body inside a square enclosure with different thermal boundaries is performed. The mathematical model is governed by the coupled equation of mass, momentum and energy. These equations are discretized by finite volume method with power-law scheme and solved numerically by SIMPLE algorithm with under-relaxation technique. Effect of Rayleigh number, temperature difference ratio of solid-fluid, aspect ratio of solid-enclosure and the thermal conductivity ratio of solid-fluid are investigated numerically for Pr = 0.7. The flow and heat transfer aspects are demonstrated in the form of streamlines and isotherms respectively.

A Study on the Temperature Characteristics at the Inlet and the Outlet Pipes of a Refrigerator Drain Condenser (냉장고 배출수 응축기 입출구 배관에서의 온도 특성에 관한 연구)

  • Ha, Ji Soo;Kim, Tae Kwon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2014
  • The present study was conducted to elucidate the characteristics of temperature at the inlet and outlet pipes of a refrigerator drain condenser and suggest the method to predict the temperature of the refrigerant at the inlet and outlet pipes of the drain condenser. For this purpose, a built in style refrigerator was installed in a constant temperature chamber to measure temperatures at the inlet and outlet pipes of the drain condenser. From the results of the present analysis, it could be seen that the measured temperatures changed from $37^{\circ}C$ to $46^{\circ}C$ and the actual refrigerant temperatures were higher than the measured temperatures with the difference magnitude of $8^{\circ}C$ to $22^{\circ}C$. The present study suggested that the temperatures of the refrigerator could be calculated with the measured temperatures by introducing curve fitting of the measured temperature. The predicted refrigerant temperatures by the present study had the accuracy within 6% error of the actual refrigerant temperatures.