• Title/Summary/Keyword: Temperature Trend

Search Result 1,297, Processing Time 0.031 seconds

Analysis for Air Temperature Trend and Elasticity of Air-water Temperature according to Climate Changes in Nakdong River Basin (기후변화에 따른 낙동강 유역의 기온 경향성 및 수온과의 탄성도 분석)

  • Shon, Tae Seok;Lim, Yong Gyun;Baek, Meung Ki;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.822-833
    • /
    • 2010
  • Temperature increase due to climate changes causes change of water temperature in rivers which results in change of water quality etc. and the change of river ecosystem has a great impact on human life. Analyzing the impact of current climate changes on air and water temperature is an important thing in adapting to the climate changes. This study examined the effect of climate changes through analyzing air temperature trend for Nakdong river basin and analyzed the elasticity of air-water temperature to understand the effect of climate changes on water temperature. For analysis air temperature trend, collecting air temperature data from the National Weather Service on main points in Nakdong river basin, and resampling them at the units of year, season and month, used as data for air temperature trend analysis. Analyzing for elasticity of air-water temperature, the data were collected by the Water Environment Information system for water temperature, while air temperature data were collected at the National Weather Service point nearest in the water temperature point. And using the results of trend analysis and elasticity analysis, the effect of climate changes on water temperature was examined estimating future water temperature in 20 years and 50 years after. It is judged that analysis on mutual impact between factors such as heat budget, precipitation and evapotranspiration on river water temperature affected by climate changes and river water temperature is necessary.

The Impacts of Urbanization on Changes of Extreme Events of Air Temperature in South Korea (한국의 도시화에 의한 극한기온의 변화)

  • Lee, Seung-Ho;Heo, In-Hye
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.3
    • /
    • pp.257-276
    • /
    • 2011
  • This study aimed to analyze the changes of extreme temperature indices in order to investigate impacts of urbanization on changes of extreme temperature. It was analyzed 16 indices related to extreme temperature indices to 60 weather stations in South Korea. Extreme temperature indices-related summer mostly increased, and its related to winter decreased. Percentile-based indices were clearly increased more than fixed-based indices as a tropical night. Decreasing trend of extreme temperature indices related to winter had more clear than increasing trend of extreme temperature indices related to summer. It was similar to trend that urban temperature was more clearly increased in winter than summer. Decreasing trend of indices-related daily minimum temperature had more clear than increasing trend of indices-related daily maximum temperature. Also, it was similar to increasing trend of minimum temperature had more clear than maximum temperature.

Interannual Variability and Long-term Trend of Coastal Sea Surface Temperature in Korea (한국 연안 표층수온의 경년변동과 장기변화)

  • Min, Hong-Sik;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.415-423
    • /
    • 2006
  • Interannual variation and long-term trends of coastal sea surface temperature (SST) in Korea were investigated by analyzing 27 coastal SST time series from 1969 to 2004. Long-term linear increasing trend was remarkable with the rate over $0.02^{\circ}C/year$ at almost all the stations. The slope of long-term linear trend was larger at the stations along the eastern coast than in the western and southern regions. It was also noticeable that there was a common tendency of interannual variability with the period of 3-5 years at most of the stations. SST was lower in the 1970's and early 1980's while it was higher in the 1990's and early 2000's after the increase in the late 1980's. The pattern of the interannual variability of SST was similar to that of air temperature. Increasing trend of minimum SST in winter was obvious at most stations na it was larger along the eastern coast, while the linear trend of maximum SST in summer was less definite. Therefore, the decreasing tendency of annual amplitude was mainly due to the increasing tendency of SST in winter.

Change the Annual Amplitude of Sea Surface Temperature due to Climate Change in a Recent Decade around the Korean Peninsula

  • Han, In-Seong;Lee, Joon-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.233-241
    • /
    • 2020
  • We examined long-term variations in sea surface temperature (SST) and annual amplitudes of SST around the Korean Peninsula. Two SST data sets with data periods of approximately 51 years and longer than 100 years, respectively, were obtained from the National Institute of Fisheries Science and Japan Meteorological Agency. SST of Korean waters clearly increased during last 51 years (1968-2018), which was 2.5 times higher than the global trend. This significant increasing trend was caused by the dominant increasing SST trend during winter. However, a negative and positive SST anomaly frequently appeared during winter and summer, respectively, in a recent decade. These features of seasonal SST variation have changed the annual amplitude of SST, and resulted in a drastically increasing trend after 2009. Using the longer SST data set, it was revealed that the decreasing SST trend in winter began in the 2000s and the increasing SST trend in summer bagan in the 1990s. During a recent decade, there was a distinctive SST increase in summer, whereas a clear decrease in winter. In summary, the annual amplitude of SST around the Korean Peninsula significantly changed from a decreasing trend to an increasing trend during a recent decade.

Analysis on Variation of Diurnal Temperature Range of Busan and Daegu according to Urbanization (도시화에 따른 부산과 대구의 일교차 변화 특성에 관한 연구)

  • Park, Myung-Hee;Lee, Joon-Soo;Ahn, Ji-Suk;Lee, Hye-Hyun;Han, In-Seong;Eom, Ki-Hyuk;Suh, Young-Sang;Kim, Hae-Dong;Bae, Hun-Kyun
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.295-310
    • /
    • 2016
  • In this study, changes in daily temperature range were investigated using daily maximum and minimum temperatures of Busan and Daegu for last 81 years (1934-2014), and also characteristics of daily temperature range and seasonal fluctuations by urbanization were examined. First, elapsing changes showed a lower decreasing trend in Busan ($0.32^{\circ}C$) than Daegu ($1.28^{\circ}C$) for last 81 years. Daily temperature range showed the highest rise in winter in both Busan and Daegu. Second, daily temperature range due to urbanization showed that Busan had a pronounced decreasing trend before urbanization meanwhile Daegu showed the same trend after urbanization. On seasonal changes, the results of Busan showed a decreasing trend in summer before urbanization, and in autumn after urbanization. For Daegu, the results showed a decreasing trend in spring before urbanization, and in winter after urbanization. Seasonal fluctuations of Busan showed little difference in the pre and post-urbanization, except in winter and summer. There was large difference in daily temperature range in winter after urbanization, and in summer before the urbanization. The results in Daegu showed that there was decreasing trend of daily temperature range in all seasons after urbanization.

Climatological Trend of Sea Water Temperature around the Antarctic Peninsula Waters in the Southern Ocean

  • Lee, Chung-Il;Kim, Sang-Woo;Kim, Dong-Sun;Yoon, Moon-Geun
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Climatological trend for the period of 1970 to 2009 in sea water temperature around the Antarctic Peninsular waters in the Southern Ocean was investigated. During the period from 1970 to 2009, sea water temperature in the top 500 m water column except 100 m increased at a rate of $0.003-0.011^{\circ}C{\cdot}yr^{-1}$, but at 100 m it decreased at a rate of $-0.003^{\circ}C{\cdot}yr^{-1}$. Although long-term trend is generally warming, there were several periods of sharp changes between 1970 and 2009. Annual mean sea water temperature between surface and 500 m except 100 m decreased from the early of 1970s to the end of 1980s, and then it increased to the end of 2000s. In the entire water column between the surface and 500 m, sea water temperature closely correlated with the El Nino events expressed as the Southern Oscillation Index(SOI), and SOI and sea water temperature have a dominant period of about 3-5 years and decade.

The Analysis of Climate Change in Haiyan County

  • Yu, Wenzheng;Zhang, Hanxiaoya;Chen, Tianliang;Liu, Jing;Shen, Yanbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3941-3954
    • /
    • 2020
  • In this paper, the climate change in Haiyan County in recent decades was analyzed in detail with the methods of moving average, Mann-Kendall non-parametric mutation test and wavelet analysis. According to the variation trend of meteorological factors such as temperature, relative humidity, wind speed, pan evaporation and precipitation in recent decades, the climate of Haiyan County has a tendency of drought, which is becoming more and more serious. From the results of the analysis, the sunshine hours and the air temperature in Haiyan County have an obvious upward trend. The average surface temperature has increased by 2.75 ℃ from 1976, and its largest increase occurred in the late 1970s and 1980s. At this stage, the average surface temperature increased by 1.37 ℃. The relative humidity has a decreasing trend that has decreased by 2.75%. From 1976 to the present, there are two quasi-3a cycles and one quasi-6a cycle. The precipitation and evaporation showed the opposite change trend, in which the trend of precipitation fluctuated upward, while the trend of evaporation showed a fluctuating downward tendency, which led to the serious loss of water in the feeding area. The wind direction in Haiyan County are mainly from west to east, and its wind speed has a trend of slight increase.

Correction of Mean and Extreme Temperature Simulation over South Korea Using a Trend-preserving Bias Correction Method (변동경향을 보존하는 편의보정기법을 이용한 우리나라의 평균 및 극한기온 모의결과 보정)

  • Jung, Hyun-Chae;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.205-219
    • /
    • 2015
  • In this study, the simulation results of temperature by regional climate model (Reg- CM4) over South Korea were corrected by Hempel et al. (2013)'s method (Hempel method), and evaluated with the observation data of 50 stations from Korea Meteorological Administration. Among the 30 years (1981~2010) of simulation data, 20 years (1981~2000) of simulation data were used as a training data, and the remnant 10 years (2001~2010) data were used for the evaluation of correction. In general, the Hempel method and parametric quantile mapping show a reasonable correction both in mean and extreme climate of temperature. As the results, the systematic underestimation of mean temperature was greatly reduced after bias correction by Hempel method. And the overestimation of extreme climate, such as the number of TN5% and freezing day, was significantly recovered. In addition to that, the Hempel method better preserved the temporal trend of simulated temperature than other bias correction methods, such as the quantile mapping. However, the overcorrection of the extreme climate related to the upper quantile, such as TX5% and hot days, resulted in the exaggeration of the simulation errors. In general, the Hempel method can reduce the systematic biases embedded in the simulation results preserving the temporal trend but it tends to overcorrect the non-linear biases, in particular, extreme climate related to the upper percentile.

The Change of Seasonal Trend Appeared in Wintertime Daily Mean Temperature of Seoul, Korea (서울의 겨울철 일평균 기온에 나타난 계절 추이와 변화)

  • Park, Byong-Ik
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.2
    • /
    • pp.152-167
    • /
    • 2011
  • This study aims to investigate the change of seasonal trend appeared in the daily normals of wintertime daily mean temperature of Seoul for 1941~1970 and 1971~2000 and the factors to affect it. The lowest temperature in wintertime is appeared in the period of the first and second ten-days of January in the daily normals for 1941~1970 and in the third ten-days of January and the first ten-days of February for 1971~2000. This means seasonal trend was changed. This change is due to the fact average temperature from 27 December to 20 January is rising much more than the wintertime mean temperature and average temperature from 21 January to 9 February less than that for two daily normals. This features are notable after 1971. The Siberian high and norther wind around the Korean Peninsula are weakened remarkably recently, so mean temperature of Seoul from 27 December to 20 January is warming much more. On the other hand, the Siberian high from 21 January to 9 February is weakened and the Aleutian low is strengthened recently and northerly is not change obviously, so temperature of Seoul is not warming so much.

Global Warming Trend : Further Evidence from Multivariate Long Memory Models of Temperature and Tree Ring Series

  • Chung, Sang-Kuck
    • Environmental and Resource Economics Review
    • /
    • v.9 no.3
    • /
    • pp.515-544
    • /
    • 2000
  • This paper shows that various fractionally integrated univariate and multivariate are remarkably successful in representing annual temperature series and also very long series of tree ring widths, which are often used as a proxy for temperature. The analysis also suggests that human recorded temperature series are not inconsistent with being generated by a stationary, long memory process. From the empirical results, we should be noted that the statistically significant positive trend coefficients may well be due to small sample sizes. These results cast some doubt on the basic assumption that global warming is definitely occurring.

  • PDF