• Title/Summary/Keyword: Temperature Sensibility

Search Result 143, Processing Time 0.031 seconds

Experimental Study on Thermal Sensation Evaluation in Heating(part I: Emotion & Sensibility Image Evaluation by Indoor Temperature Change in Heating) (실내 난방시 온열쾌적성 평가에 관한 연구(part I;실내 난방시 실온변화에 따른 감성이미지 평가))

  • 한남규;금종수;김형철;김동규;김창연
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.41-46
    • /
    • 2003
  • In recently, Is inhabiting more than 70% indoors during a day in case of company employee and ordinary people which is looking at usual business. Therefore Thermal comfort of human body about indoor temperature and air flow acting very heftily. When intestine temperature is fallen for external low temperature and air flow in winter in case enter into heated room feel comfort by effect of temperature and feel comfort or discomfort by room heating condition gradually. Therefore it is important that grasp thermal comfort about temperature and air flow in heating to keep continuous comfort in indoor dwelling. Temperature and thermal comfort factor of emotion & sensitivity image exert fair effect since heating middle although thermal comfort change greatly effect on sensation about temperature at actuality heating early. Need much study yet in vantage point of emotion & sensitivity although much study were held about thermal and comfort sensibility and when heat in existing research until now. Therefore this study is targeting that evaluate thermal comfort through introduction of estimation method by emotion & sensibility image real and synthetic sensibility about thermal environment that is becoming winter heating.

  • PDF

Comfortableness Evaluation Method using EEGs of the Frontopolar and the Parietal Lobes (전두엽과 두정엽의 뇌파를 이용한 쾌적성 평가 방법)

  • 김동준;김흥환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.374-379
    • /
    • 2004
  • This paper proposes an algorithm for human sensibility evaluation using 4-channel EEG signals of the prefrontal and the parietal lobes. The algorithm uses an artificial neural network and the multiple templates. The linear prediction coefficients are used as the feature parameters of human sensibility. Comfortableness for chairs and temperature/humidity are evaluated. Many conventional researches have emphasized that a wave of left prefrontal lobe is activated in case of positive sensibility and that of right prefrontal lobe is activated in case of negative sensibility. So the power ratio of a wave is obtained from FFT computation and the results are compared. The results of the comfortableness evaluation for temperature and humidity showed that the outputs of the proposed algorithm coincided with corresponding sensibilities depending on the task of the temperature and the humidity. The . conventional method using a wave is hardly related with comfortableness. And it is also observed that the uncomfortable state due to the high temperature and humidity can be easily changed to the comfortable state by small drop of the temperature and the humidity. It seems to be good results to get 66.7% of evaluation performance in spite of using EEG and the subject independent approach.

Development of thermal comfort measurment system to establish emotion and sensibility engineering data base (감성공학 DB 구축을 위한 열적쾌적성 측정 시스템 개발)

  • 한화택;박명규;이성수;천효성;박성준
    • Science of Emotion and Sensibility
    • /
    • v.6 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • The objective of the present study is to develop a thermal comfort measurement system for ergonomic sensibility analysis. The system can measure basic components for thermal comfort, such as skin temperature and clothing temperature/humidity level. A study on the linearization of temperature and humidity sensors has been conducted for more accurate and stable sensor development. The software has been developed for thermal comfort analysis for both clothing thermal environments and indoor environments.

  • PDF

A Study of Stability Evaluation Method Using EEG (뇌파 비교를 통한 안정 상태평가에 관한 연구)

  • Seo, In-Seok
    • Journal of Digital Contents Society
    • /
    • v.7 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This paper proposes an algorithm for human sensibility evaluation using 4-channel EEG signals of the prefrontal and the parietal lobes. The algorithm uses an artificial neural network and the multiple templates. The linear prediction coefficients are used as the feature parameters of human sensibility. Comfortableness and temperature/humidity are evaluated. Many conventional researches have emphasized that a wave of left prefrontal lobe is activated in case of positive sensibility and that of right prefrontal lobe is activated in case of negative sensibility. So the power ratio of n wave is obtained from for computation and the results are compared. The results of the comfortableness evaluation for temperature and humidity showed that the outputs of the proposed algorithm coincided with corresponding sensibilities depending on the task of the temperature and the humidity. The conventional method using a wave is hardly related with comfortableness. And it is also observed that the uncomfortable state due to the high temperature and humidity can be easily changed to the comfortable state by small drop of the temperature and the humidity.

  • PDF

The Development of the Smart Sensibility Mat with Kangaroo Mother Care (캥거루 케어를 반영한 스마트 감성 매트의 개발)

  • Cho, Soo-Min
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • 'Smart Sensibility Mat (SSM)' was developed and manufactured for positive sensibility of newborn with fiber, digital, and sensibility technology to reflect features and advantages of kangaroo care. For tactile stimuli, the tube of the silicon material to provide a constant temperature of $32^{\circ}C$ was inserted into the mat and connected to the water-thermostat. To provide a uniform temperature throughout the mat, the fabric by the inserting conductive yarn was attached to the mat surface. After wrapping the mat with cotton pad, the polyurethane foam used as medicine in order to similar to the human skin was bonded to the surface of the mat. To provide the auditory stimuli of a level of 30dB with mother's heartbeat sounds and voice recorded in advance, the Bluetooth speaker was inserted into the mat. To investigate the effects of SSM, 10 newborns who born within two weeks were involved in this experiment. While the baby was lying on each of the general mat (GM) and SSM, the baby's physiological signals-heart rate, breathing rate, temperature- were measured and then, those were conducted t-test to examine the difference between the signals of SSM and GM. The results were as follows: heart rate (t=8.131, p<.001) and respiratory rate (t=7.227, p<.001) among the physiological signals of SSM decreased significantly than GM within the normal range. Temperature (t=1.062, p=0.292) at SSM showed a tendency to decrease than GM within the normal range. This means the tactile stimuli and the auditory stimuli providing from SSM give stable physiological responses. Thus, SSM leads to have psychological comfort and stability of newborns.

The Influence of Land Cover Types on Sensibility Image in Urban Greenspace (도시녹지의 포장유형이 감성이미지에 미치는 영향)

  • Joo, Chang-Hun;Park, Bong-Ju;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The present study was conducted with the object of measuring sensibility image through an experiment with human bodies and indexing human feelings according to land cover types. The temperature by land cover types formed the lowest temperature in planted areas and the highest temperature in paved areas. The wind velocity is stronger in bare grounds, the surface of water and building areas than planted areas, grassland and paved areas. In the case of using a globe thermometer, a solar controled device confirmed the planted areas. In summer, an increase of thermal sensation are indicated a decrease of amenity, and the sensation which has high correlationship is in order by amenity, thermal sensation, airflow sensation and humidity sensation.

Sensibility Evaluation Model Research as to The Three-dimensional Surface Light Source set In The Interior (실내 3D 입체 면광원 조명연출에 관한 감성평가 모형 연구)

  • Lee, Jin-Sook;Park, Ji-Young;Jeong, Chan-Ung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.14-26
    • /
    • 2015
  • This study has been conducted so as to analyse user's sensibility on lighting method, correlated color temperature and illumination by composing surface light source, which was projected onto a unit side of interior wall, ceiling and floor. 1) As an analyzed results of the sensibility images, it showed that the "snug & tender" value had got higher when the correlated color temperature got lower. And the "energetic, cheerful" value had got higher when the level of illuminance got lower. Furthermore, the "unusual, unique" showed higher value on the illuminated floor circumstance. Finally, the higher correlated color temperature had been, "energetic, cheerful" value also got higher. 2) As a result of multi-regression analysis, it was found that 3000K and 100lx had the biggest influence on 'snug' image while 5,500K, 500lx had the biggest influence on 'energetic' image. In addition, it was found that the illuminated floor had a big influence on 'unusual' image while 500lx had the biggest influence on 'refined' image.

A Study on Application of the Multi-layor Perceptron to the Human Sensibility Classifier with Eletroencephalogram (뇌파의 감성 분류기로서 다층 퍼셉트론의 활용에 관한 연구)

  • Kim, Dong Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1506-1511
    • /
    • 2018
  • This study presents a human sensibility evaluation method using neural network and multiple-template method on electroencephalogram(EEG). We used a multi-layer perceptron type neural network as the sensibility classifier using EEG signal. For our research objective, 10-channel EEG signals are collected from the healthy subjects. After the necessary preprocessing is performed on the acquired signals, the various EEG parameters are estimated and their discriminating performance is evaluated in terms of pattern classification capability. In our study, Linear Prediction(LP) coefficients are utilized as the feature parameters extracting the characteristics of EEG signal, and a multi-layer neural network is used for indicating the degree of human sensibility. Also, the estimation for human comfortableness is performed by varying temperature and humidity environment factors and our results showed that the proposed scheme achieved good performances for evaluation of human sensibility.

Seasonal Weather Factors and Sensibility Change Relationship via Textmining

  • Yeo, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.219-224
    • /
    • 2022
  • The Korea Meteorological Administration(KMA) has been released life-related indexes such as 'Life industrial weather information' and 'Safety weather information' while other countries' meteorological administrations have been made 'Human-biometeorology' and 'Health meteorology' indexes that concern human sensibility effections to diverse criteria. Although human sensibility changes have been studied in psychological research criteria with diverse and innumerous application areas, there are not enough studies that make data mining based validation of sensibility change factors. In this research I made models to estimate sensibility change caused by weather factors such as temperature and humidity, and validated by collecting sensibility data from SNS text crawling and weather data from KMA public dataset. By Logistic Regression, I clarify factors affecting sensibility changes.