Abstract
This paper proposes an algorithm for human sensibility evaluation using 4-channel EEG signals of the prefrontal and the parietal lobes. The algorithm uses an artificial neural network and the multiple templates. The linear prediction coefficients are used as the feature parameters of human sensibility. Comfortableness for chairs and temperature/humidity are evaluated. Many conventional researches have emphasized that a wave of left prefrontal lobe is activated in case of positive sensibility and that of right prefrontal lobe is activated in case of negative sensibility. So the power ratio of a wave is obtained from FFT computation and the results are compared. The results of the comfortableness evaluation for temperature and humidity showed that the outputs of the proposed algorithm coincided with corresponding sensibilities depending on the task of the temperature and the humidity. The . conventional method using a wave is hardly related with comfortableness. And it is also observed that the uncomfortable state due to the high temperature and humidity can be easily changed to the comfortable state by small drop of the temperature and the humidity. It seems to be good results to get 66.7% of evaluation performance in spite of using EEG and the subject independent approach.