• 제목/요약/키워드: Temperature Control Device

검색결과 438건 처리시간 0.023초

소형 스핀들 시스템 적용을 위한 형상기억합금 기반 공구 클램핑 장치의 체결특성 고찰 (Investigation for Clamping Properties of the Tool Clamping Device Based on the Shape Memory Alloy for Application of a Micro Spindle System)

  • 신우철;노승국;박종권;이득우;정준모
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.9-14
    • /
    • 2007
  • In this paper, a rotating tool clamping device was developed based on a shape memory alloy(SMA) and its feasibility as a tool holder was experimentally explored. The SMA-based device was able to alter clamping to unclamping through temperature control within 1 second. The means and repeatability(${\sigma}$) of the tool clamping force were 185.5N and 6N respectively and its drifts were less than 3% for an hour. Considering the temperature hysteresis of the SMA-based tool clamping device, it is necessary to heat the SMA ring to around $50^{\circ}C$ after tool change to obtain more clamping force.

정전척 표면의 온도 균일도 향상을 위한 냉매 유로 형상에 관한 연구 (Study on Coolant Passage for Improving Temperature Uniformity of the Electrostatic Chuck Surface)

  • 김대현;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.72-77
    • /
    • 2016
  • As the semiconductor production technology has gradually developed and intra-market competition has grown fiercer, the caliber of Si Wafer for semiconductor production has increased as well. And semiconductors have become integrated with higher density. Presently the Si Wafer caliber has reached up to 450 mm and relevant production technology has been advanced together. Electrostatic chuck is an important device utilized not only for the Wafer transport and fixation but also for the heat treatment process based on plasma. To effectively control the high calories generated by plasma, it employs a refrigerant-based cooling method. Amid the enlarging Si Wafers and semiconductor device integration, effective temperature control is essential. Therefore, uniformed temperature distribution in the electrostatic chuck is a key factor determining its performance. In this study, the form of refrigerant flow channel will be investigated for uniformed temperature distribution in electrostatic chuck.

Numerical study of oxygen transport characteristics in lead-bismuth eutectic for gas-phase oxygen control

  • Wang, Chenglong;Zhang, Yan;Zhang, Dalin;Lan, Zhike;Tian, Wenxi;Su, Guanghui;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2221-2228
    • /
    • 2021
  • One-dimensional oxygen transport relation is indispensable to study the oxygen distribution in the LBE-cooled system with an oxygen control device. In this paper, a numerical research is carried out to study the oxygen transport characteristics in a gas-phase oxygen control device, including the static case and dynamic case. The model of static oxygen control is based on the two-phase VOF model and the results agree well with the theoretical expectation. The model of dynamic oxygen control is simplified and the gas-liquid interface is treated as a free surface boundary with a constant oxygen concentration. The influences of the inlet and interface oxygen concentration, mass flow rate, temperature, and the inlet pipe location on the mass transfer characteristics are discussed. Based on the results, an oxygen mass transport relation considering the temperature dependence and velocity dependence separately is obtained. The relation can be used in a one-dimensional system analysis code to predict the oxygen provided by the oxygen control device, which is an important part of the integral oxygen mass transfer models.

영상장치 센서 데이터 QC에 관한 연구 (A study on imaging device sensor data QC)

  • 윤동민;이재영;박성식;전용한
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Development of Temperature control system for kimchi-refrigerator using fuzzy logic

  • Jung, Kwang Sik;No, Young Iun;Lim, Young Chel;Ryoo, Young Jae;Ahn, Min Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.111.2-111
    • /
    • 2002
  • The temperature of Kimchi-refrigerator is controlled by the wishing condition the original taste of Kimchi, the fast precocity of Kimchi. In this paper we studied the controlling temperature of Kimchi-refrigerator. The controlling temperature of Kimchi refrigerator is based on microcontroller which control On/Off. In this paper, Fuzzy logic was used to control the temperature of Kimchi-refrigeration. I will apply to fuzzy logic control to have simple rule control on the place of On-Off control system in the past. This device controls the in order to measure several temperature of two refrigeration plant in Kimchi refrigerator solenoid valve in refrigeration plant. A solenoid valve...

  • PDF

접시형 태양열 시스템을 이용한 2단계 열화학 싸이클의 수소 생산과 PID 온도 제어 기법 연구 (A Study on Pill Temperature Control method and Hydrogen Production with 2-step Thermochemical Cycle Using Dish Type Solar Thermal System)

  • 김철숙;김동연;조지현;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.42-50
    • /
    • 2013
  • Solar thermal reactor was studied for hydrogen production with a two step thermochemical cycle including T-R(Thermal Reduction) step and W-D(Water Decomposition) step. NiFe2O4 and Fe3O4 supported by monoclinic ZrO2 were used as a catalyst device and Ni powder was used for decreasing the T-R step reaction temperature. Maintaining a temperature level of about $1100^{\circ}C$ and $1400^{\circ}C$, for 2-step thermochemical reaction, is important for obtaining maximum performance of hydrogen production. The controller was designed for adjusting high temperature solar thermal energy heating the foam-device coated with nickel- ferrite powder. A Pill temperature control system was designed based on 2-step thermochemical reaction experiment data(measured concentrated solar radiation and the temperature of foam device during experiment). The cycle repeated 5 times, ferrite conversion rate are 4.49~29.97% and hydrogen production rate is 0.19~1.54mmol/g-ferrite. A temperature controller was designed for increasing the number of reaction cycles related with the amount of produced hydrogen.

디레이팅 기법에 의한 마이크로 퓨즈 용단의 특성 분석 (Character Analysis of Micro Fuse Fusing as a function of De-Rating technique)

  • 김도경;김종식
    • 조명전기설비학회논문지
    • /
    • 제29권6호
    • /
    • pp.8-13
    • /
    • 2015
  • Recently, Illumination industry of LED module has been focused to industry technology for energy conservation of nation. The LED device is excellent to power efficiency due to semiconductor light source element. And the application to the lighting circuit technology can be designed to the sensitive lighting system for human sensitivity control. In this paper, as a process for analyzing the operating temperature of standardized electronic device including LED device has analyzed about fusing character with in designed micro fuse for electronic device protection from the over current. Using the de-rating technique, which is performed to micro fuse fusing test in the range of $-30^{\circ}C{\sim}120^{\circ}C$ thermostatic chamber. To the output data in each temperature zone, it is performed to first-order linear fitting. Additionally, applying the resistance temperature coefficient and statistical data for the reliable analysis has derived to the metal element resistance of micro fuse with temperature change of the thermostatic chamber. As a research result, The changed temperature effect of thermostatic chamber was confirmed regarding fusing time change.

유전알고리즘을 이용한 열전소지 기반 히팅 시스템의 최적 온도 제어기 구현 (Implementation of Optimal Temperature Controller for Thermoelectric Device-based Heating System Using Genetic Algorithm)

  • 공정식
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.41-47
    • /
    • 2023
  • This paper presents the development of a controller that can control the temperature of an heating system based on a thermoelectric module. Temperature controller using Peltier has various external factors such as external temperature, characteristics of an aluminum plate, installation location of temperature sensors, and combination method between the aluminum plate and heating element. Therefore, it is difficult to apply the simulation and simulation results of heating system using Peltier at control algorithm. In general, almost temperature controller is using PID algorithm that finds control gain value heuristically. In this paper, it is proposed mathematical model that explain correlate between the temperature of the heating system and input voltage. And then, optimal parameter of estimated thermal model of the aluminum plate are searched by using genetic algorithm. In addition, based on this estimated model, the optimal PID control gain are inferred using a genetic algorithm. All of the sequence are simulated and verified with proposed real system.

PC를 이용한 공정관리시스템 개발 (Process Management System using a PC)

  • 송준엽;이승우;이현용
    • 산업공학
    • /
    • 제6권2호
    • /
    • pp.171-181
    • /
    • 1993
  • In this study, a process management system is designed that can automatically control the heat treating atmosphere, and a managment software is developed to monitor and control continously the heat treating process using a n interface device. Especially, a communication protocol is developed to control and monitor atmosphere condition, temperature, surrounding gas, and time. The developed interface device, called COMPORT SELECTOR is to send and receive information from PID controllers and PLC via RS-232C communication. This system will reduce manufacturing cost and cycle time, and improve the effectiveness of working process and quality.

  • PDF

형상기억합금을 이용한 회전공구 클램핑 장치 구현 (Implementation of the rotating tool clamping device using a shape memory alloy)

  • 정준모;박종권;이동주;신우철
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.16-20
    • /
    • 2008
  • This paper presents the construction of micro tool clamping device using a Ni-Ti shape memory alloy(SMA) ring. Clamping force of the device is produced by elastic force of the SMA reverted to its original shape in normal temperature. Phase transformation of the SMA was realized by temperature control using a peltier element. Prototype of the SMA tool clamping device was fabricated and examined its clamping force and clamping/unclamping operation.