• Title/Summary/Keyword: Temperature Accuracy

Search Result 1,780, Processing Time 0.042 seconds

Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • 김동환;김병민;이영석;유선준;주웅용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF

Improved Mutual MRAS Speed Identification Based on Back-EMF

  • Zheng, Hong;Zhao, Jiancheng;Liu, Liangzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.769-774
    • /
    • 2016
  • In the design of sensorless control system for induction motor, high-precision speed estimation is one of the most difficult problems. To solve this problem, the common method is model reference adaptive method (MRAS). MRAS requires accurate motor parameters to estimate rotor speed precisely. However, when motor is running, the variety of temperature and magnetic saturation will lead to the change of motor parameters such as stator resistance and rotor resistance, which will lower the accuracy of the speed estimation. To improve the accuracy and rapidity of speed estimation, this paper analyses the mutual MRAS speed identification based on rotor flux linkage, and proposes an improved mutual MRAS speed identification based on back-EMF. The improved method is verified by Simulink simulation and motor experimental platform based on DSP2812. The results of simulation and experiment indicate that the method proposed by this paper can significantly improve the accuracy of speed identification, and speed up the response of identification.

A Numerical Experiments on the Atmospheric Circulation over a Complex Terrain around Coastal Area. Part II : (연안부근 복잡지형의 대기유동장 수치실험 II -부산광역지역에 대한 국지순환모형의 적용-)

  • 김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • Since Pusan metropolitanarea where is composed complex terrain is connected to sea the sea-land breeze circulation and the mountain-valley circulation are apt to form A regional scale circulation system is formed at a region which has complex terrain because of curves of its and affect to the dispersion and advection of air pollutants. LCM Local Circulation Model which a propriety was verified described that sea breeze and valley wind at the daytime and land breeze and mountain wind at the nighttime were well devellped over the Pusan metropolital area. Next for the investigation of accuracy of simulated results an observed value at Kae-Kum and Su-Young on the pusan metropolitan area were compared with it at those points. From the comparison of the temperature and horizontal velocity between the results of LCM and an observed values they have a similar trend of a diurnal variation. For the prediction of dispersion and transportation of air pollutants the wind field should be calculated with high accuracy. A numerical simulation using LCM can provide more accuracy results around Pusan metropolitan area.

  • PDF

Drift error compensation for vision-based bridge deflection monitoring

  • Tian, Long;Zhang, Xiaohong;Pan, Bing
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.649-657
    • /
    • 2019
  • Recently, an advanced video deflectometer based on the principle of off-axis digital image correlation was presented and advocated for remote and real-time deflection monitoring of large engineering structures. In engineering practice, measurement accuracy is one of the most important technical indicators of the video deflectometer. However, it has been observed in many outdoor experiments that data drift often presents in the measured deflection-time curves, which is caused by the instability of imaging system and the unavoidable influences of ambient interferences (e.g., ambient light changes, ambient temperature variations as well as ambient vibrations) in non-laboratory conditions. The non-ideal unstable imaging conditions seriously deteriorate the measurement accuracy of the video deflectometer. In this work, to perform high-accuracy deflection monitoring, potential sources for the drift error are analyzed, and a drift error model is established by considering these error sources. Based on this model, a simple, easy-to-implement yet effective reference point compensation method is proposed for real-time removal of the drift error in measured deflections. The practicality and effectiveness of the proposed method are demonstrated by in-situ deflection monitoring of railway and highway bridges.

Designing Interactive Walkways of Smart Cities in Saudi Arabia

  • Jadi, Amr
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.121-128
    • /
    • 2021
  • In this work, a noble walkway approach suitable for Saudi Arabia (SA) towards its aim to develop a wide range of smart cities is considered scientifically. This work intends to minimize the errors at each level by testing the events that take place in the walkway environment. similarly, the minimum requirements to develop a walkway to the additional features to be considered while designing a walkway are discussed in this paper with sensitive areas such as environmental factors, healthcare issues, patients visiting the walkways, etc. The applications of different monitoring devices such as CCTV's, global positioning systems (GPS), etc. are carefully addressed to help the proposed method for improving the monitoring activities of a variety of events that possibly cause problems to a common man. The ultimate goal of this work to ensure a safe and satisfied journey of pedestrians while they come for a walk with all suitable safety measures. The safety measures included in this work are for pollution, noise, temperature, humidity and traffic jams on the roads. To improve the accuracy and to test the proposed approach some polices are defined and will be tested for the consistency of the proposed system. The obtained accuracy of the proposed system is proved to be far better with an accuracy of 93% improvement in the results.

Differentiation among stability regimes of alumina-water nanofluids using smart classifiers

  • Daryayehsalameh, Bahador;Ayari, Mohamed Arselene;Tounsi, Abdelouahed;Khandakar, Amith;Vaferi, Behzad
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2022
  • Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.

Analysis of 2-Dimensional Elasto-Plastic Stress by a Time-Discontinuous Variational Integrator of Hamiltonian (해밀토니안의 시간 불연속 변분적분기를 이용한 2차원 탄소성 응력파 해석)

  • Chol, S.S.;Huh, H.;Park, K.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.263-266
    • /
    • 2008
  • This paper is concerned with the analysis of elasto-plastic stress waves in a mode I semi-infinite cracked solid subjected to Heaviside pulse load. This study adopts a time-discontinuous variational integrator based on Hamiltonian in order to reduce the numerical dispersive and dissipative errors. This also utilizes an integration scheme of the constitutive model with 2nd-order accuracy which is formulated on the strain space for a rate and temperature dependent material model. Finite element analyses of elasto-plastic stress waves are carried out in order to compare the accuracy between a conventional Galerkin method and the time- discontinuous variational integrator.

  • PDF

Numerical and Experimental Analyses of a Hot-Wire Gas Flowmeter

  • Kim, Byoung-Chul;Joung, Ok-Jin;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1201-1206
    • /
    • 2003
  • A measurement device for gas flow rate using hot-wire module is developed for the utilization in low-accuracy industrial applications. The module has three wires of measuring and heating, and a bridge circuit is installed to detect electric current through the wire in the module. An amplification of the signal and conversion to digital output are conducted for the online measurement with a personal computer. In addition, temperature distribution in the module is numerically analyzed to examine the measured outcome from the module experiment. The flow rate of air and carbon dioxide gas is separately measured for the performance examination of the device. The experimental relation of measurement and flow agrees with the prediction from the numerical analysis. The outcome of the performance test indicates that the accuracy and reproducibility of the module is satisfactory for the purpose of industrial applications.

  • PDF

A STUDY ON THERMAL MODEL REDUCTION AND DYNAMIC RESPONSE (열해석 모델 간략화 및 동적특성에 관한 연구)

  • Jun, Hyoung Yoll;Kim, Jung-Hoon
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.37-44
    • /
    • 2014
  • A detailed satellite panel thermal model composed of more than thousands nodes can not be directly integrated into a spacecraft thermal model due to its node size and the limitation of commercial satellite thermal analysis programs. For the integration of the panel into the satellite thermal model, a reduced thermal model having proper accuracy is required. A thermal model reduction method was developed and validated by using a geostationary satellite panel. The temperature differences of main components between the detailed and the reduced thermal model were less than $1^{\circ}C$ in steady state analysis. Also, the dynamic responses of the detailed and the reduced thermal model show very similar trends. Thus, the developed reduction method can be applicable to actual satellite thermal design and analysis with resonable accuracy and convenience.

A Study on Performance of Linear Motor for Machine Tools (공작기계용 리니어모터의 운동성능 평가에 관한 연구)

  • 최헌종;강은구;정일용;이석우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.215-220
    • /
    • 2002
  • Recently, linear motor has been developed for linear motion of machine tools. Linear motor is useful to design the linear motion, high speed and high accuracy, because of the simple system not required the additional mechanical part such as coupling and ballscrew. This paper tested performance of linear motor relevant to motioning and positioning table such as F.R.F., step response and positional accuracy Linear motion system using linear motor requires the effective cooling system because it cause to decrease the positional error and to protect the motor coil. Therefore the positional error measurement was made to evaluate the effect of the temperature variation.

  • PDF