• Title/Summary/Keyword: Temperature Accuracy

Search Result 1,780, Processing Time 0.035 seconds

High accuracy, Low Power Spread Spectrum Clock Generator to Reduce EMI for Automotive Applications

  • Lee, Dongsoo;Choi, Jinwook;Oh, Seongjin;Kim, SangYun;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.404-409
    • /
    • 2014
  • This paper presents a Spread Spectrum Clock Generator (SSCG) based on Relaxation oscillator using Up/Down Counter. The current is controlled by a counter and the spread spectrum of the Relaxation Oscillator. A Relaxation Oscillator with temperature compensation using the BGR and ADC is presented. The current to determine the frequency of the Relaxation Oscillator can be controlled. The output frequency of the temperature can be compensated by adjusting the current according to the temperature using the code that is the output from the ADC and BGR. EMI Reduction of SSCG is 11 dB, and Spread down frequency is 150 kHz. The current consumption is $600{\mu}A$ from 5V and the operating frequency is from 2.3 MHz to 5.75 MHz. The rate of change of the output frequency with temperature was approximately ${\pm}1%$. The SSCG is fabricated in a 0.35um CMOS process with active area $250um{\times}440um$.

Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 소성면형특성(1))

  • Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.158-163
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. However, due to the low formability and large spring back at room temperature, titanium alloy sheets were usually formed by slow forming or hot forming with heating die and specimen. In the sheet metal forming area, FE simulation technique to optimize forming process is widely used. To achieve high accuracy FE simulation results, Identification of material properties and deformation characteristic such as yield function are very important. In this study, uniaxial tensile and biaxial tensile test of Ti-6Al-4V alloy sheet with thickness of 1.0mm were performed at elevated temperature of 873k. Biaxial tensile tests with cruciform specimen were performed until the specimen was breakdown to characterize the yield locus of Ti-6Al-4V alloy sheet. The experimental results for yield locus are compared with the theoretical predictions based on Von Mises, Hill, Logan-Hosford, and Balat's model. Among these Logan-Hosford's yield criterion well predicts the experimental results.

  • PDF

A Study on Solar Power Generation Efficiency Empirical Analysis according to Temperature and Wind speed (온도와 풍속에 따른 태양광발전 효율 실증분석 연구)

  • Cha, Wang-Cheol;Park, Joung-Ho;Cho, Uk-Rae;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Factors that have influence on solar power generation are specified into three aspects such as meteorological, geographical factors as well as equipment installation. Meteorological factors influence the most among the three. Insolation, sunshine hours, and cloud directly influence on solar power generation, whereas temperature and wind speed have impacts on equipment installation. This paper provides explanation over temperature-wind speed equation by calculating influence of temperature and wind speed on equipment installation. In order to conduct a research, pyranometer, anemometer, air thermometer, module thermometer are installed in 2MWp solar power plant located in South Cholla province, so that real-time meteorological data and generating amount can be analyzed through monitoring system. Besides, if existing and new methods are applied together, accuracy of prediction for generating amount is improved.

A Comparative Study of Algorithms for Estimating Land Surface Temperature from MODIS Data

  • Suh, Myoung-Seok;Kim, So-Hee;Kang, Jeon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.65-78
    • /
    • 2008
  • This study compares the relative accuracy and consistency of four split-window land surface temperature (LST) algorithms (Becker and Li, Kerr et ai., Price, Ulivieri et al.) using 24 sets of Terra (Aqua)/Moderate Resolution Imaging Spectroradiometer (MODIS) data, observed ground grass temperature and air temperature over South Korea. The effective spectral emissivities of two thermal infrared bands have been retrieved by vegetation coverage method using the normalized difference vegetation index. The intercomparison results among the four LST algorithms show that the three algorithms (Becker-Li, Price, and Ulivieri et al.) show very similar performances. The LST estimated by the Becker and Li's algorithm is the highest, whereas that by the Kerr et al.'s algorithm is the lowest without regard to the geographic locations and seasons. The performance of four LST algorithms is significantly better during cold season (night) than warm season (day). And the LST derived from Terra/MODIS is closer to the observed LST than that of Aqua/MODIS. In general, the performances of Becker-Li and Ulivieri et al algorithms are systematically better than the others without regard to the day/night, seasons, and satellites. And the root mean square error and bias of Ulivieri et al. algorithm are consistently less than that of Becker-Li for the four seasons.

Analysis and Prediction of Behavioral Changes in Angelfish Pterophyllum scalare Under Stress Conditions (스트레스 조건에 노출된 Angelfish Pterophyllum scalare의 행동 변화 분석 및 예측)

  • Kim, Yoon-Jae;NO, Hea-Min;Kim, Do-Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.965-973
    • /
    • 2021
  • The behavior of angelfish Pterophyllum scalare exposed to low and high temperatures was monitored by video tracking, and information such as the initial speed, changes in speed, and locations of the fish in the tank were analyzed. The water temperature was raised from 26℃ to 36℃ or lowered from 26℃ to 16℃ for 4 h. The control group was maintained at 26℃ for 8 h. The experiment was repeated five times for each group. Machine learning analysis comprising a long short-term memory model was used to train and test the behavioral data (80 s) after pre-processing. Results showed that when the water temperature changed to 36℃ or 16℃, the average speed, changes in speed and fractal dimension value were significantly lower than those in the control group. Machine learning analysis revealed that the accuracy of 80-s video footage data was 87.4%. The machine learning used in this study could distinguish between the optimal temperature group and changing temperature groups with specificity and sensitivity percentages of 86.9% and 87.4%, respectively. Therefore, video tracking technology can be used to effectively analyze fish behavior. In addition, it can be used as an early warning system for fish health in aquariums and fish farms.

Estimation of Hardening Layer Depths in Laser Surface Hardening Processes Using Neural Networks (레이져 표면 경화 공정에서 신경회로망을 이용한 경화층 깊이 예측)

  • Woo, Hyun Gu;Cho, Hyung Suck;Han, You Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.52-62
    • /
    • 1995
  • In the laser surface hardening process the geometrical parameters, especially the depth, of the hardened layer are utilized to assess the integrity of the hardening layer quality. Monitoring of this geometrical parameter ofr on-line process control as well as for on-line quality evaluation, however, is an extremely difficult problem because the hardening layer is formed beneath a material surface. Moreover, the uncertainties in monitoring the depth can be raised by the inevitable use of a surface coating to enhance the processing efficiency and the insufficient knowledge on the effects of coating materials and its thicknesses. The paper describes the extimation results using neural network to estimate the hardening layer depth from measured surface temperanture and process variables (laser beam power and feeding velocity) under various situations. To evaluate the effec- tiveness of the measured temperature in estimating the harding layer depth, estimation was performed with or without temperature informations. Also to investigate the effects of coating thickness variations in the real industry situations, in which the coating thickness cannot be controlled uniform with good precision, estimation was done over only uniformly coated specimen or various thickness-coated specimens. A series of hardening experiments were performed to find the relationships between the hardening layer depth, temperature and process variables. The estimation results show the temperature informations greatly improve the estimation accuracy over various thickness-coated specimens.

  • PDF

Development of an Early Diagnostic Device for African Swine Fever through Real-time Temperature Monitoring Ear-tags (RTMEs)

  • Taehyeun Kim;Minjong Hong;JungHwal Shin
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.275-279
    • /
    • 2023
  • Throughout the 20th century, the transition of pig farms from extensive to intensive commercial operations amplified the risk of disease transmission, particularly involving African swine fever (ASF). Real-time temperature monitoring systems have emerged as essential tools for early ASF diagnosis. In this paper, we introduce new real-time temperature monitoring ear tags (RTMEs) modeled after existing ear tag designs. Our crafted Pig-Temp platforms have three primary advantages. First, they can be effortlessly attached to pig ears, ensuring superior compatibility. Second, they enable real-time temperature detection, and the data can be displayed on a personal computer or smartphone application. Furthermore, they demonstrate excellent measurement accuracy, ranging from 98.9% to 99.8% at temperatures between 2.2 and 360℃. A linear regression approach enables fever symptoms associated with ASF to be identified within 3 min using RTMEs. The communication range extends to approximately 12 m (452 m2), enabling measurements from an estimated 75 to 2,260 pigs per gateway. These newly developed Pig-Temp platforms offer singifcant enhancement of early ASF detection.

Low Temperature Interface Modification: Electrochemical Dissolution Mechanism of Typical Iron and Nickel Base Alloys

  • Jiangwei Lu;Zhengyang Xu;Tianyu Geng
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.220-241
    • /
    • 2024
  • Due to its unique advantages, electrochemical machining (ECM) is playing an increasingly significant role in the manufacture of difficult-to-machine materials. Most of the current ECM research is conducted at room temperature, with studies on ECM in a cryogenic environment not having been reported to date. This study is focused on the electrochemical dissolution characteristics of typical iron and nickel base alloys in NaNO3 solution at low temperature (-10℃). The polarization behaviors and passive film properties were studied by various electrochemical test methods. The results indicated that a higher voltage is required for decomposition and more pronounced pitting of their structures occurs in the passive zone in a cryogenic environment. A more in-depth study of the composition and structure of the passive films by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy showed that the passive films of the alloys are modified at low temperature, and their capacitance characteristics are more prominent, which makes corrosion of the alloys more likely to occur uniformly. These modified passive films have a huge impact on the surface morphologies of the alloys, with non-uniform corrosion suppressed and an improvement in their surface finish, indicating that lowering the temperature improves the localization of ECM. Together with the cryogenic impact of electron energy state compression, the accuracy of ECM can be further improved.

Improvement of the Conductor Temperature Calculation Algorithm for Calculating the Allowable Current in the Underground Channel (지중관로에서의 실제 허용전류 산출을 위한 도체온도 계산 알고리즘 개선에 관한 연구)

  • Lee, Hyang-Beom;Lee, Byung-Chul;Kim, Jung-Hoon;Nam, Yong-Hyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.352-357
    • /
    • 2018
  • In this paper, the improvement of the conductor temperature calculation algorithm is studied. The allowable current of the underground transmission line is determined by the conductor temperature limit. Usually to calculate the allowable current limit, the conductor temperature is assumed in the most worst environment condition. It is possible to increase the transmission capacity if the actual burial environment is considered. Therefore, in this paper an algorithm is proposed to calculate the conductor temperature by distinguishing two area of a underground transmission line condition - the manhole where the temperature sensor can be installed and the underground transmission line in which the temperature sensor can not be installed easily. When calculating the conductor temperature by the underground line in the pipeline, the existing standard describes each environment as a single soil heat resistance and one ambient temperature. In order to compensate this situation, thermal resistance model that can take into consideration the ground surface temperature and under ground temperature is proposed. It is shown that the accuracy of the proposed model is increased compared with the existing standard calculation result.

A Study on Measuring the Temperature and Revising the Result When Measuring the Temperature of NPP Pipes Using Infrared Thermography (적외선 열화상 기술을 이용한 원자력 배관의 온도측정과 보정에 관한 연구)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Pack, Chan-Joo;Kim, Dong-Soo;Jung, Duk-Woon;Chang, Ho-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.421-426
    • /
    • 2009
  • The emissivity is different because the emitted angle changes according to the position of the infrared thermography camera and object. Because of this, the temperature distribution expressed when measuring the temperature by using the infrared thermography system is not the accuracy temperature. Although the real surface temperature is constant, the temperature measured by using infrared thermography camera have error in accordance with the value of emissivity. In this paper, the temperatures of the round cylindrical object and the flat square object that heated to the equal temperature were measured by infrared thermography camera. The emissivity calibration formula and correction table are made with the affect of the view angle and emission angle form the surface temperature value. The error of measured temperature values are corrected by using the emissivity calibration formula and correction table, and apply to defect detection of the nuclear power plant pipe. From the calibration method, reliability surface temperature values were obtained.