• 제목/요약/키워드: Temperature Accuracy

Search Result 1,780, Processing Time 0.034 seconds

Determination of the Overall Heat Transfer Coefficient for Non-isothermal Finite Element Analysis (비 등온 유한요소해석을 위한 접면열전달계수의 결정)

  • 강연식;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.72-77
    • /
    • 1997
  • In the temperature analysis of hot metal forming process, the heat transfer conditions between the work-piece and the tool have improtant influences upon the temperature distribution. The accuracy of thermal analysis depends on the proper description of boundary conditions including heat transfer. At the contact surface of two materials with different temperatures, this requires the knowledge of the overall heat transfer coefficient. In order to determine the overall heat transfer coefficient, a technique is developed. The technique involves temperature measurement by using thermocouples during hot upsetting operations and finite element computation. The overall heat transfer coefficient is determined using a non-linear optimization technique.

  • PDF

Accuracy Assessment of Atmospheric Sounding Data from Terra/MODIS

  • Lee, Mi-Suk;Kim, Young-Seup;Kwon, Byung-Hyuk;Hong, Ki-Man;Park, Kyung-Won
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.201-203
    • /
    • 2003
  • Two MODIS instruments on board the Terra and Aqua Satellites are operational for global remote sensing of the land, ocean and atmosphere. Atmospheric sounding data with a high spatial resolution from MODIS will provide a wealth of useful information. The vertical air temperature and moisture data were retrieved using the MODIS data, and compared with the radiosonde data obtained in the Korean Peninsula. The correlation coefficient are 0.99 and 0.89 for air temperature and moisture cases, respectively. Air temperature data were relatively good agreement, but the moisture data from MODIS were underestimated.

  • PDF

Concentration Measurement of Alcohol Solution Using an On-Line Refractometer (온라인 굴절계를 이용한 알코올 농도와 측정)

  • Ham, Tae-Won;Kim, Young-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.427-431
    • /
    • 2001
  • An on-line refractometer made of easily obtainable materials is built to determine the concentration of an alcohol solution, and its performance is examined by applying to the system of ethanol and water. Since the refractive index and the temperature are measured simultaneously, it is possible to compensate the effect of temperature which is not available with an existing on-line refeactometer. Therefore, it can be implemented in the application of process control. The experimental outcome indicates that the home-made refractometer has satisfactory reproducibility and reasonable accuracy for the industrial application.

  • PDF

Modal Characteristics of Steel Plate-Girder Under Various Temperatures (강판형의 진동모드특성에 미치는 온도의 영향)

  • 김정태;윤재웅;백종훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.58-64
    • /
    • 2003
  • The performance of vibration-based damage detection methods is dependent upon the accuracy of modal parameters measured from structures of interest. Vibration monitoring, performed on a structure under uncertain temperature conditions, results in the uncertainty in model parameters of the structure. In this study, an experiment on the effect of various temperatures on modal characteristics of steel plate-girders is presented. First, the model plate-girder used for the experiment is described. Second, natural frequencies measured from the structure, using two different excitation sources, are described. Third, natural frequencies measured from the structure, under various temperatures, are described. Finally, the relationship between measurement temperature and natural frequency is analyzed.

The Study on Intelligent Cooling Load Forecast of Ice-storage System (빙축열 시스템의 지능형 냉방부하예측에 관한 연구)

  • Koh, Taek-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2061-2065
    • /
    • 2008
  • In the conventional operation of ice-storage system based on operator's experience and judgement, the failure in forecast of cooling load occurs frequently due to operator's misjudgement and unskilled operation. This study presents the method of constructing self-organizing fuzzy models which forecast tomorrow temperature, humidity and cooling load periodically for economic and efficient operation of ice-storage system. To check the effectiveness and feasibility of the suggested algorithm, the actual example for forecasting temperature, humidity and cooling load of ice- storage system in KEPCO training institute, Sokcho, is examined. The computer simulation results show that the accuracy of temperature, humidity, cooling load forecast of the suggested algorithm is higher than that of the conventional methods.

The 3-hour-interval prediction of ground-level temperature using Dynamic linear models in Seoul area (동적선형모형을 이용한 서울지역 3시간 간격 기온예보)

  • 손건태;김성덕
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.213-222
    • /
    • 2002
  • The 3-hour-interval prediction of ground-level temperature up to +45 hours in Seoul area is performed using dynamic linear models(DLM). Numerical outputs and observations we used as input values of DLM. According to compare DLM forecasts to RDAPS forecasts using RMSE, DLM improve the accuracy of prediction and systematic error of numerical model outputs are eliminated by DLM.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING (Thermal Striping 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

Diagnoses of Abiotic Stress in Cucumber Plant with Non-destructive Physiological Instruments

  • Sung, Jae Hoo;Suh, Sang Ryong;Chung, Gap Chae;Lee, K.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2001
  • This paper describes method to diagnose abiotic stresses such ad low root temperature, low light intensity and high salinity in cucumber plants with several physiological instruments. The stresses could be detected by measuring and analyzing the differences in chlorophyll content, temperature difference between leaf and atmosphere and light absorptance at wavelengths of 480, 560, 710, 1420 and 1650nm. It was concluded that the stresses could be first diagnosed from the 3rd to 10th day after treatment and the overall accuracy of diagnosis was estimated between 25 and 75%. near-infrared spectrometer showed better and earlier detection than the other instruments investigated.

  • PDF

Dynamic responses of laminated beams under a moving load in thermal environment

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.729-737
    • /
    • 2020
  • The goal of this study is to investigate dynamic responses of laminated composite beams under a moving load with thermal effects. The governing equations of problem are derived by using the Lagrange procedure. The transverse-shear strain and rotary inertia are considered within the Timoshenko beam theory. The material properties of laminas are considered as the temperature dependent physical property. The differential equations of the problem are solved by the Ritz method. The solution step of dynamic problem, the Newmark average acceleration method is used in the time history. A compassion study is performed for accuracy of used formulations and method. In the numerical results, the effects of velocity of moving load, temperature values, the fiber orientation angles and the stacking sequence of laminas on the dynamic responses of the composite laminated beam are investigated.

Effects of the in-process calibration from IR detector for thermal diffusivity measurement by laser flash method (레이저 섬광법에 의한 열확산계수 측정시 적외검출소자에서 실시간 온도보정이 미치는 영향)

  • 이원식;배신철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.795-802
    • /
    • 1998
  • For measuring the thermal diffusivity by laser flash method, raw data have to be calibrated using temperature data. We have developed in-process calibration method and polynomial calibration in which thermal diffusivity can be calibrated during measuring, This method is different from existing temperature pre-process calibration method and exponential calibration having various source of error. Using this new calibration method, measurement accuracy was improved about 1∼2% compare to the value by the existing method. We also studied more accurate fitting curve as in Figure 4 was shown the result of measuring output characteristics of IR radiometer with temperature. As illustrated in data, in-process calibration method and polynomial calibration equation is proper than pre-process calibration method and exponential calibration.

  • PDF