• Title/Summary/Keyword: Temperature

Search Result 88,885, Processing Time 0.105 seconds

Agronomic Characteristics and Herbicidal Response of Barnyard Millet Strains Under Paddy Rice (답리작 적응 조사료용 피의 생육특성 및 제초제 반응)

  • Park, Tae-Seon;Park, Hong-Kyu;Hong, Seong-Woo;Kim, Jeong-Gon;Chung, Nam-Jin;Cho, Hyun-Suk;Seong, Ki-Yeong;Yang, Woon-Ho;Seo, Myung-Chul;Kang, Hang-Won
    • Korean Journal of Weed Science
    • /
    • v.32 no.3
    • /
    • pp.256-262
    • /
    • 2012
  • This experiment was conducted to determine the agronomic characteristics for selection of the excellent barnyard millet and the herbicidal response for their weediness prevention in paddy rice. IT170609, IT195422 and EV2012 have produced more dry matter compared to other barnyard millets tested. In varietal characteristics by heading date, IT170609 showed medium maturing type and IT195422 and EV201 had late maturing type. The germination rate of IT170609, IT195422 and EV2012 on temperature was higher than Echnochloa oryzicola of native species, and it was definitely distinctive at 20 and $25^{\circ}C$. In the herbicidal response for their weediness prevention in paddy rice, imazosulfuron+benzobicyclone+penoxsulam SC showed control effect the extend of over 90% to IT170609, IT195422 and EV2012. Cyhalofop-butyl EC, penoxsulam SC and metamifop EC were very effective by 6~7 leaf stage of barnyard millets tested.

A Study on the Growth Characteristics of Commercially Developed Nitrifying Bacteria and its Application to Activated Sludge Process (상업용 질산화 박테리아의 성장특성과 활성슬러지 공정에서의 적용 방법에 따른 연구)

  • Whang, Gyu-Dae;Lee, Bong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.595-604
    • /
    • 2006
  • The growth characteristics of Commercially Developed Nitrifying Bacteria (CDNB) were studied in laboratoryscale. CDNB, a pure, artificially isolated bacterium, was cultivated to produce Cultivated Nitrifying Bacterium Group (CNBG). The average ammonia removal rate of CDNB was 0.0234g $NH_4^+-N/g$ MLSS/hr. CNBG was produced in the batch reactor and Specific Nitrification Rate (SNR) was determined at 0.0107g $NH_4^+-N/g$ MLSS/hr. The SNR of CNBG was lower than the SNR of CDNB because the diverse and multi-cultured microbial growth took place during cultivation. The effect of the temperatures and the mixing ratios of sewage and culture solution on the SNR of CNBG was studied. The SNR of CNBG, 0.0107g $NH_4^+-N/g$ MLSS/hr at $27^{\circ}C$, decreased to 0.0048g $NH_4^+-N/g$ MLSS/hr at $15^{\circ}C$, and temperature coefficient (${\Theta}$) was calculated to be 1.07. With the varied sewage mixing ratios, the SNR of CNBG remained unchanged. Activated sludge reactors maintaining an MLSS of 2,000mg/L at HRT of 4 h were operated under conditions in which dosage of Concentrated CNBG Solution (CCNBGS, 10,000mg MLSS/L) and application method of CNBG were varied. The reactor with 20mL of CCNBGS took shorter time to oxidize $NH_4^+-N$ reaching 1mg/L than the reactor with 5mL of CCNBGS showing that higher dosages were associated with greater mass removal of $NH_4^+-N$. However, the total removal was not great. In terms of different methods of CNBG application, reactor seeded with 20mL of CCNBGS took 3days to reach 1mg/L of effluent ammonia concentration while reactor dosed with 20% (v/v) CNBG implanted media took 2days. Both the control reactor and the reactor dosed with 20% (v/v) media only did not reach 1mg $NH_4^+-N/L$ after operating 18days. The reactor with CNBG implanted media had the highest $NH_4^+-N$ removal rate because of maintaining high concentration of Nitrifying Oxidizing Bacteria (NOM), and is regarded as an appropriate method for the activated sludge process.

Effect of Treatment Amounts of Slurry Composting and Biofiltration Liquid Fertilizer on Growth Characteristics and Bioethanol Production of Yellow Poplar (SCB액비 처리량에 따른 백합나무의 생장 및 바이오에탄올 생산)

  • Kim, Ho-Yong;Gwak, Ki-Seob;Kim, Hye-Yun;Ryu, Keun-Ok;Kim, Pan-Gi;Cho, Do-Hyun;Choi, Jin-Yong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.459-468
    • /
    • 2011
  • The main purpose of this study was to examine the influence of treatment amounts of Slurry Composting and Biofiltration liquid fertilizer (SCBLF) on biomass growth of Yellow poplar (Liriodendron tulipifera) and to compare bioethanol production from the harvested wood. Relative growth rate, biomass production and leaf characteristics were significantly enhanced by SCBLF treatment and medium treatment plot showed highest value. Nitrogen compounds and water content in SCBLF affected to increase chlorophyll contents which led improving biomass production (64.67%) and glucose contents (6.07%) than control. Organosolv and dilute acid pretreatments were preliminarily carried for bioethanol production, and the pretreatment processes were conducted at all the same solid to liquid ratio (1 : 10), reaction temperature ($150^{\circ}C$), preheating time (40 min) and residence time (10 min). The water insoluble solid recovery of Organosolv pretreatment with 1% sulfuric acid as a catalyst was the lowest and that of medium treatment plot was 44.81%. Exchangeable cations in SCBLF might be affected to increase pretreatment effect. The simultaneous saccharification and fermentation process was followed to determine the ethanol production of the pretreated biomass. The highest ethanol production yield based on initial weight was obtained from high treatment plotby Organosolv pretreatment with 1% sulfuric acid (16.11%). But regarding biomass production, medium treatment plot produced most, and bioethanol production was increased by 72.93% than control.

Assessment on Thermal Transmission Property of Wall Through a Scaled Model Test (축소모형 실험을 통한 벽체의 열관류 측정)

  • Chang, Yoon-Seong;Kim, Sejong;Shim, Kug-Bo;Lee, Sang-Joon;Han, Yeonjung;Park, Yonggun;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.884-889
    • /
    • 2015
  • Appropriate evaluation of thermal insulation property of structural member and valid control of cooling/heating energy are important for improving building's energy efficiency. The typical heating system of house in Korea is the floor heating one. The radiation heating system is not only appropriate to climate and geographic conditions of Korea, but also advantageous to provide emotional comfort by the warm feeling of floor. Based on living conditions in Korea, scaled models of the wooden house and concrete house were designed. The ceiling was made of styrofoam insulation and the four sided walls and bottom were made of plywood and concrete, respectively. The floor was heated by heating film. Indoor vertical temperature distributions by floor heating system were measured by thermocouple, and surface temperatures on walls were measured by infrared thermography. Also, thermal insulation property of wooden wall was evaluated to build database for improving energy efficiency of wooden building. It is expected that collected data during tests of various types of floor and wall composition could be referenced for evaluating thermal environment of actual conditions of houses.

Predicting Influence of Changes in Indoor Air Temperature and Humidity of Wooden Cultural Heritages by Door Opening on Their Conservation Environment (개방에 따른 실내 온습도 변화가 목조문화재 보존환경에 미치는 영향 예측)

  • Kim, Min-Ji;Shin, Hyun-Kyeong;Choi, Yong-Seok;Kim, Gwang-Chul;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.798-803
    • /
    • 2015
  • This study was conducted to predict the effect of door opening in wooden cultural heritages (WCHs) on their conservation environment. For this prediction, measured relative humidity (RH) and surface wood moisture content (MC) of inner part of wood columns in open wooden building and neighboring closed wooden building were compared with minimum RH, including the duration of minimum RH, and MC required for spore germination and resultant growth of wood-degrading fungi reported in some literatures. Moisture conditions, namely RH of inside wooden building and MC of wood was unsuitable for decay and sap-stain fungi all the year round; however, moisture conditions during summer season was suitable for spore germination and resultant growth of surface mold fungi, regardless of door opening. When compared, the duration of minimum (75%) or higher RH and the number of wood columns with MC level greater than the minimum MC (15%) during summer season, the surface mold related to the conservation environment of inside wooden building was somewhat better in open building than in closed building. Rather, doors should be opened in closed building for reducing indoor RH as a necessary measure during summer season when outdoor RH is high.

Immobilization of Cellulases from Fomitopsis pinicola and Their Changes of Enzymatic Characteristics (흡착법에 의한 Fomitopsis pinicola 유래 cellulase의 고정화와 그에 따른 효소특성 변화)

  • Shin, Keum;Kim, Tae-Jong;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.251-261
    • /
    • 2010
  • Cellulase from Formiptosis pinicola KMJ812 is an efficient cellulose degradation enzyme complex, especially with a high ${\beta}$-glucosidase activity. In this study, the change in enzymatic characteristics by immobilization and the reduction of immobilized enzyme activity by repeated usages were evaluated using cellulases from F. pinicola KMJ812. Among tested four resins, Duolite A568 resin had the best enzyme activity yield with 61.7% cellulase activity and 64.4% ${\beta}$- glucosidase activity during the cellulase immobilization. The best reaction temperature was $55^{\circ}C$ for both cellulase and ${\beta}$-glucosidase activities which were higher than the unimmobilized soluble cellulases. The best reaction pH was 4.0 for cellulase activity which was a little more basic than a soluble form and 4.5 for ${\beta}$-glucosidase activity. The immobilized cellulase activity was remained 98% of the beginning activity after 72 h incubation at $50^{\circ}C$ and 50% of the beginning activity after eight times usage at $50^{\circ}C$.

The Effects of Aprotinin on ACT and the Total Amount of Heparin for Open Heart Surgery (개심술에서 Aprotinin이 heparin 사용량 및 ACT에 미치는 영향)

  • 이현우;이재웅;박철현;박국양
    • Journal of Chest Surgery
    • /
    • v.33 no.7
    • /
    • pp.560-564
    • /
    • 2000
  • Background; Aprotinin, which is a nonspecific serine protease inhibitor, has an antiinflammatory and thrombogenic effect. However, it has an antithrombogenic effect during the cardiopulmonary bypass. This study was performed to evaluated the effects of aprotinin on the activated clotting time(ACT) and the total amount of the heparin used during the cardiopulmonary bypass. Marterial and Method; From December 1998 to November 1999, 82 consecutive patients electively underwent open heart surgery at Gachon medical school. The patients were older than 18 years. Eighty two patients were classified into a control group(group C, n=36) and a aprotinin-treated group(group A, n=46). Body weight, height, body surface area(BSA), pump time(PT), aortic cross clamping time(ACCT), and body temperature(BT) were determined. Total amount of heparin and protamine during the CPB were also measured. ACT was determined before heparin administration, at 20, 40 and 60 minutes after heparin administration, and after protamine administration. Result; No significant differences were noted in either group in body weight, height, BSA, BT, and the total amoun of heparin and protamine. Group A demonstrated a significant(p <0.05) increase in age, PT, ACCT, and ACT at 20, 40, and 60 minutes after heparin administration. Conclusion; In summary, the use of aprotinin prime resulted in an increase in ACT. The total amount of heparin in aproinin-treated patient was similar to that of the control group in spite of having the prolonged pump time. Therefore aprotinin may reduce the requirement of heparin.

  • PDF

Comparison of Different Thawing Methods on Cryopreserved Aorta (냉동 보존된 대동맥의 해동방법)

  • 오영민;심성보;사영조;박재길;곽문섭;이선희
    • Journal of Chest Surgery
    • /
    • v.37 no.2
    • /
    • pp.113-118
    • /
    • 2004
  • The studies on cryopreserved arterial allograft have been focused on cooling methods, pre-treatment, cryoprotectant agents, and preservation temperature. But recently, several studies have reported that thawing methods also play an important role in the occurrence of macroscopic and microscopic cracks. This study was designed to investigate the cell injury after thawing, using a rabbit model to clarify the effect of thawing methods on cryopreserved arteries. Material and Method: Segments of the rabbit aorta were obtained and divided into 3 groups (n=60) according to whether the specimens were fresh (control, n=20), cryopreserved and rapidly thawed (RT) at 37$^{\circ}C$ (n=20), or cryopreserved and subjected to controlled, automated slow thawing (ST)(n=20). Cell damage was established using the TUNEL method and the morphological changes were also evaluated. Result: In the group that was rapidly thawed, the expression of TUNEL (+) cells increased significantly more than in the slowly thawed group. In addition, the endothelial denudation, microvesicles and edema were significant in the rapidly thawed group compared with those changes in the slowly thawed group. Conclusion: Our study suggests that the rapid thawing method may be one of the major causes of cellular damage and delayed rupture in cryopresewed arterial allografts. The expression of TUNEL (+) cells and structural changes were significantly low in the slowly thawed group, which might have contributed to the improvement of graft failure after transplantation.

Characteristics of the Diamond Thin Film as the SOD Structure

  • Lee, You-Seong;Lee, Kwang-Man;Ko, Jeong-Dae;Baik, Young-Joon;Chi, Chi-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.58-58
    • /
    • 1999
  • The diamond films which can be applied to SOD (silicon-on-diamond) structure were deposited on Si(100) substrate using CO/H2 CH4/H2 source gases by microwave plasma chemical vapor deposition(MPCVD), and SOD structure have been fabricated by poly-silicon film deposited on the diamond/Si(100) structure y low pressure chemical vapor deposition(LPCVD). The phase of the diamond film, surface morpholog, and diamond/Si(100) interface were confirmed by X-ray diffraction(XRD), scanning electron microscopy(SEM), atomic force microscopy(AFM), and Raman spectroscopy. The dielectric constant, leakage current and resistivity as a function of temperature in films are investigated by C-V and I-V characteristics and four-point probe method. The high quality diamond films without amorphous carbon and non-diamond elements were formed on a Si(100), which could be obtained by CO/H2 and CH4/H2 concentration ratio of 15.3% and 1.5%, respectively. The (111) plane of diamond films was preferentially grown on the Si(100) substrate. The grain size of the films deposited by CO/H2 are gradually increased from 26nm to 36 nm as deposition times increased. The well developed cubo-octahedron 100 structure nd triangle shape 111 are mixed together and make smooth and even film surface. The surface roughness of the diamond films deposited by under the condition of CO/H2 and CH4/H2 concentration ratio of 15.3% and 1.5% were 1.86nm and 3.7 nm, respectively, and the diamond/Si(100) interface was uniform resistivity of the films deposited by CO/H2 concentration ratio of 15.3% are obtained 5.3, 1$\times$10-9 A/cm, 1 MV/cm2, and 7.2$\times$106 $\Omega$cm, respectively. In the case of the films deposited by CH4/H2 resistivity are 5.8, 1$\times$10-9 A/cm, 1 MV/cm, and 8.5$\times$106 $\Omega$cm, respectively. In this study, it is known that the diamond films deposited by using CO/H2 gas mixture as a carbon source are better thane these of CH4/H2 one.

  • PDF

Investigation of field emission mechanism of undoped polyucrystalline diamond films

  • Shim, Jae-Yeob;Chi, Eung-Joon;Song, Kie-Moon;Baik, Hong-Koo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.62-62
    • /
    • 1999
  • Carbon based materials have many attractive properties such as a wide band gap, a low electron affinity, and a high chemical and mechanical stability. Therefore, researches on the carbon-based materials as field emitters have been drawn extensively to enhance the field emission properties. Especially, diamond gives high current density, high current stability high thermal conductivity durable for high temperature operation, and low field emission behaviors, Among these properties understanding the origin of low field emission is a key factor for the application of diamond to a filed emitter and the verification of the emission site and its distribution of diamond is helpful to clarify the origin of low field emission from diamond There have been many investigations on the origin of low field emission behavior of diamond crystal or chemical vapor deposition (CVD) diamond films that is intentionally doped or not. However, the origin of the low field emission behavior and the consequent field emission mechanism is still not converged and those may be different between diamond crystal and CVD diamond films as well as the diamond that is doped or not. In addition, there have been no systematic studies on the dependence of nondiamond carbon on the spatial distribution of emission sites and its uniformity. Thus, clarifying a possible mechanism for the low field emission covering the diamond with various properties might be indeed a difficult work. On the other hand, it is believed that electron emission mechanisms of diamond are closely related to the emission sites and its distributions. In this context, it will be helpful to compare the spatial distribution of emission sites and field emission properties of the diamond films prepared by systematic variations of structural property. In this study, we have focused on an understanding of the field emission variations of structural property. In this study, we have focused on an understanding of the field emission mechanism for the CVD grown undoped polycrystalline diamond films with significantly different structural properties. The structural properties of the films were systematically modified by varying the CH4/H2 ratio and/or applying positive substrate bias examined. It was confirmed from the present study that the field emission characteristics are strongly dependent on the nondiamond carbon contents of the undoped polycrystalline diamond films, and a possible field emission mechanism for the undoped polycrystalline diamond films is suggested.

  • PDF