• Title/Summary/Keyword: Temper embrittlement

Search Result 20, Processing Time 0.032 seconds

Life Prediction and Evaluation of Fracture Toughness of a Cr-Mo Degraded Steel During Long Service (장기 사용 Cr-Mo강 열화재의 파괴 인성 평가와 수명예측)

  • 권재도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1421-1428
    • /
    • 1992
  • It has been increasingly recognized that the safety analysis considering fracture mechanics is required of the pressure vessels made of 2 1/4 Cr-1Mo steel for safe operation due to temper-embrittlement during long term service. In this study, the fracture toughnesses of degraded and recovered 2 1/4 Cr-1Mo steels have been studied with J$_{IC}$ test specimens at room temperature and the results will be compared with the data obtained from the Charpy impact test. The fracture toughness data from above experiments will be applied to life prediction based on the surface crack growth for degraded and recovered Cr-Mo pressure vessels.

Strength Evaluation and Life Prediction of the Multistage Degraded Materials (다단계 모의 열화재의 재료강도 평가와 수명예측)

  • 권재도;진영준;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2271-2279
    • /
    • 1993
  • In the case of life prediction on the structures and machines after long service, it is natural to consider a degradation problems. Most of degradation data form practical structures are isolated data obtained at the time of periodical inspection or repair. From such data, it may be difficult to obtain the degradation curve available and necessary for life prediction. In this paper, for the purpose of obtaining a degradation curves, developed the simulate degradation method and fatigue test and Charpy impact test were conducted on the degraded, simulate degraded and recovered materials. Fatigue life prediction were conducted by using the relationship between fracture transition temperature (DBTT : vTrs) obtained from the Charpy impact test through the degradation process and fatigue crack growth constants of m and C obtained from the fatigue test.

Evaluation of degradation in aged 2.25CrMo steel by electrical resistivity, magnetic Barkhausen noise and carbide analysis (전기비저항, 바크하우젠노이즈 및 탄화물 분석법을 이용한 2.25Cr-1Mo 강의 열화도 평가)

  • Byeon, Jai-Won;Pyo, S.W.;Kwun, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.210-215
    • /
    • 2001
  • The ferritic 2.25CrMo steel has been used for high temperature structure applications such as turbine rotors, boilers and pressure vessels in fossil plant and petroleum chemical facilities. However, this steel is known to result in aging degradation due to temper embrittlement, carbide induced brittleness and softening of matrix after long time exposure to high temperature. This research investigated the microstructural and mechanical changes after artificial degradation treatment and evaluated the degree of degradation by several nondestructive methods. The decrease of electrical resistivity and increase of magnetic Barkhausen noise(RMS voltage) with increasing aging time were observed. The change of electrical resistivity and Barkhausen noise showed a good correlation with the ductile-brittle transition temperature.

  • PDF

Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test (전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가)

  • Yu, Ho-Seon;Song, Mun-Sang;Song, Gi-Uk;Ryu, Dae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.

A Study on Mechanical Characteristic of Hydrogen Charged Al-6.3Zn-2.4Mg Alloy (Al-6.3Zn-2.4Mg 합금의 수소충전에 따른 기계적 특성 연구)

  • Kim, Dae-Hwan;Choi, Tae-Young;Shim, Sung-Young;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.34 no.2
    • /
    • pp.54-59
    • /
    • 2014
  • In this study, the extruded Al-6.3Zn-2.4Mg alloys were selected among the 7000 series aluminum alloys sensitive to hydrogen environment in order to examine the effects of both the aging conditions and the length of hydrogen charging period on the mechanical properties of the alloy. The specimens were aged for 24hours at $100^{\circ}C$ (under aging (UA)), $120^{\circ}C$ (peak aging (PA)), and $160^{\circ}C$ (over aging (OA)), respectively. Charging tests were performed at RT for 12, 24, 36 hours under potentiostatic conditions (-2000 mV vs (Ag/AgCl)) for 12, 24 and 36 hours in 1M $H_2SO_4$ and 0.1%$NH_4SCN$ solution. The fracture surface was examined by scanning electron microscopy (SEM). X-ray diffraction (XRD) pattern in peak aged sample was obtained before and after hydrogen charging from extruded Al-6.3Zn-2.4Mg alloys. The decreasing rate of tensile strength and elongation is represented in order of over aging < under aging < peak aging, and it is believed that the hydrogen recharge is more sensitive to elongation than tensile strength. The formation of $AlH_3$ in hydrogen charged Al-6.3Zn-2.4Mg alloys has been confirmed by X-ray diffraction studies.

Analysis of Mechanical and Ultrasonic Properties for the Evaluation of Material Degradation in Modified 9Cr-1Mo Steel (개량형 9Cr-1Mo 강의 열화도 평가를 위한 기계적 성질 및 초음파 특성 분석)

  • Hyun, Y.K.;Won, S.H.;Lee, S.H.;Son, Y.H.;Lee, J.H.;Kim, I.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.4
    • /
    • pp.198-204
    • /
    • 2010
  • Modified 9Cr-1Mo steels possess excellent high-temperature mechanical properties and are widely used in energy conversion industries. However, in-service materials degradation, such as softening, carbide-induced embrittlement, temper embrittlement, etc., can take place during long-term operation. Evolution of microstructure due to service exposure to high temperature has a strong effect on the performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarsening of $M_{23}C_6$-type carbides are the primary cause of degradation of mechanical properties such as toughness, hardness, tensile strength and creep resistance. This study was aimed at finding reliable parameter for assessing the integrity of modified 9Cr-1Mo steels. Characteristic parameters were attained between mechanical and ultrasonic properties.

Evaluation of Fracture Toughness Degradation of CrMoV Rotor Steels Based on Ultrasonic Nonlinearity Measurements

  • Hyunjo Jeong;Nahm, Seung-Hoon;Jhang, Kyung-Young;Nam, Young-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.147-154
    • /
    • 2002
  • The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K$\_$IC/) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating the 7c consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimate K$\_$IC/, using the K$\_$IC/ versus excess temperature (i.e., T-FATT) correlation that is available in the literature for CrMoV rotor steel.

Effects of Alloying Element and Tempering on the Mechanical Properties of Cr-Mo Plastic Mold Steels (Cr-Mo계 금형강의 기계적 성질에 미치는 합금원소 및 템퍼링의 영향)

  • Kim, Nam-Kyu;Kim, Byoung-Ok;Lee, Oh-Yeon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.4
    • /
    • pp.196-205
    • /
    • 2012
  • The purpose of this study is to enhance the hardenability and the mechanical properties by the addition of alloying elements such as Ni, Cr, Mo and B for the development of Cr-Mo plastic mold steel with uniform hardness and microstructure. The ingots were prepared by vacuum induction melting and forged to ${\Phi}35mm$ round bar. Forged bars were quenched and tempered at $200{\sim}600^{\circ}C$ for 1.5 hour. Jominy test, boron distribution observation, microstructual observation, tensile test and charpy impact test were conducted. It was confirmed that the hardenablity of these steels was improved by increasing of alloying elements and further promoted by the addition of boron. The critical rate of cooling required to obtain the bainitic structure for 0.27C-1.23Cr-0.28Mo-B steel was $0.5^{\circ}C/sec$. Hardness and strength of Cr-Mo steels decreased with increasing tempering temperature, but elongation and reduction of area increased with increasing tempering temperature. However, impact energy tempered at $400^{\circ}C$ showed the lowest value in the range $200{\sim}600^{\circ}C$ due to the temper embrittlement.

Effect of Tempering Temperature on the Microstructure and Mechanical Properties of ARMOX 500T Armor Plate (템퍼링 온도에 따른 ARMOX 500T 장갑재의 미세조직과 기계적 특성)

  • Lim, Hyeon-Seok;Lee, Jimin;Song, Young-Beum;Kim, Hong-Kyu;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.359-363
    • /
    • 2017
  • The resistance of metallic materials to ballistic penetration generally depends on a number of parameters related to projectile, impact, and armor plate. Recently, armor materials have been required to have various properties such as hardness, strength, and impact toughness in order to maintain an excellent ballistic resistance even after impact. In the present study, the influence of tempering on the microstructure and mechanical properties of an ARMOX 500T armor steel plate was investigated and then compared with those of S45C and SCM440 steels. As the tempering temperature increased, the hardness and strength gradually decreased, whereas the ductility and impact toughness clearly increased because the hardness, tensile, and impact properties were affected by the microstructural evolution and precipitation occurring during tempering. On the other hand, temper embrittlement appeared at tempering temperatures of 300 to $400^{\circ}C$ for the impact specimens tested at low temperature.

An Evaluation of Aging Degradation Damage for Cr-Mo-V Steel by Electrochemical Potentiokinetic Reactivation Test (재활성화 분극시험에 의한 Cr-Mo-V강의 시효열화 손상 평가)

  • Kwon, Il-Hyun;Na, Sung-Hun;Song, Gee-Wook;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Cr-Mo-V steel is widely used as a material for the turbine structural component in fossil power plants. It is well known that this material shows the various material degradation phenomenons such as temper embrittlement, carbide coarsening. and softening etc. or ins to the severe operation conditions as high temperature and high pressure. These deteriorative factors cause tile change of mechanical properties as reduction of fracture toughness. Therefor it is necessary to evaluate tile extent of degradation damage for Cr-Mo-V steel in life assessment of turbine structural components. In this paper. the electrochemical potentiokinetic reactivation(EPR) test in $50wt%-Ca(NO_3)_2$ solution is performed to develop the newly technique for degradation damage evaluation of Cr-Mo-V steel. The results obtained from the EPR test are compared with those in small punch(SP) tests recommended by semi-nondestructive testing method using miniaturized specimen. The evaluation parameters used in EPR test are tile reactivation current density$(I_R)$ and charge$(Q_{RC})$ reactivation rate$(I_R/I_{Crit},\;Q_R/Q_{Crit})$. The results suggest that $I_R/I_{Crit}$ in these parameters shows a good correlation with SP test results.

  • PDF