• 제목/요약/키워드: Telescopes

검색결과 345건 처리시간 0.032초

Advantages of Scorpion Suture Passer and 70 Degrees Arthroscope in Arthroscopic Bankart Repair: Usefulness for Inferior Labral Repair

  • Hyun, Yoon-Suk;Shin, Woo-Jin
    • Clinics in Shoulder and Elbow
    • /
    • 제20권4호
    • /
    • pp.201-207
    • /
    • 2017
  • Background: The blunted tip of a reusable with multiple uses can cause problems with the passing procedure in arthroscopic Bankart repair. This study assessed the advantage of Scorpion with a $70^{\circ}$ arthroscope in arthroscopic Bankart repair compared to hook typed suture passer. Methods: Scorpion in 19 patients, the hook type suture passer (conventional group) in 18 patients were used. All patients underwent the same procedure except for the type of suture passer used. Another different point of the procedure were telescopes and the number of portals used; three arthroscopic portals (posterior, anterorsuperiorlateral, and mid-anterior) and a $30^{\circ}$ arthroscope in the conventional group, but two portals and a $70^{\circ}$ arthroscope as well as the $30^{\circ}$ one in the Scorpion group. The surgery time and the surgical complications including an iatrogenic axillary nerve injury were recorded. Results: The Scorpion group showed a significant decrease in surgery time compared to the conventional group. In contrast to the conventional group, Scorpion provided an easy estimation of the exit of suture passing, no iatrogenic labral injury during the passing procedure with straight movement and the sharp tip of the knife installed. Iatrogenic supraspinatus injuries could be avoided when making an accessory anteosuperiorlateral portal due to the $70^{\circ}$ arthroscope. Conclusions: In arthroscopic Bankart repair, the use of the Scorpion suture passer and a $70^{\circ}$ arthroscope can reduce the surgery time, avoid unnecessary supraspinatus injury, and avoid iatrogenic axillary nerve damage through the relatively easy and precise suture passing and saving of the anterosuperior portal.

WAVEFRONT SENSING TECHNOLOGY FOR ADAPTIVE OPTICAL SYSTEMS

  • Uhma Tae-Kyoung;Rohb Kyung-Wan;Kimb Ji-Yeon;Park Kang-Soo;Lee Jun-Ho;Youn Sung-Kie
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.628-632
    • /
    • 2005
  • Remote sensing through atmospheric turbulence had been hard works for a long time, because wavefront distortion due to the Earth's atmospheric turbulence deteriorates image quality. But due to the appearance of adaptive optics, it is no longer difficult things. Adaptive optics is the technology to correct random optical wavefront distortions in real time. For past three decades, research on adaptive optics has been performed actively. Currently, most of newly built telescopes have adaptive optical systems. Adaptive optical system is typically composed of three parts, wavefront sensing, wavefront correction and control. In this work, the wavefront sensing technology for adaptive optical system is treated. More specifically, shearing interferometers and Shack-Hartmann wavefront sensors are considered. Both of them are zonal wavefront sensors and measure the slope of a wavefront. . In this study, the shearing interferometer is made up of four right-angle prisms, whose relative sliding motions provide the lateral shearing and phase shifts necessary for wavefront measurement. Further, a special phase-measuring least-squares algorithm is adopted to compensate for the phase-shifting error caused by the variation in the thickness of the index-matching oil between the prisms. Shack-Hartmann wavefront sensors are widely used in adaptive optics for wavefront sensing. It uses an array of identical positive lenslets. And each lenslet acts as a subaperture and produces spot image. Distortion of an input wavefront changes the location of spot image. And the slope of a wavefront is obtained by measuring this relative deviation of spot image. Structures and measuring algorithms of each sensor will be presented. Also, the results of wavefront measurement will be given. Using these wavefront sensing technology, an adaptive optical system will be built in the future.

  • PDF

보현산천문대와 소백산천문대에서의 근적외선 관측 조건 (NEAR-INFRARED OBSERVING CONDITIONS AT THE BOAO AND THE SOAO)

  • 문봉곤;이성호;박수종;진호;김용하;육인수;한원용
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권4호
    • /
    • pp.453-466
    • /
    • 2004
  • 한국천문연구원에서는 적외선관측기술 개발의 일환으로 지상망원경용 근적외선 카메라인 KAONICS(KAO Near-Infrared Camera System)를 개발하고 있다. 이러한 개발의 선행 연구 과정으로서 우리는 보현산천문대와 소백산천문대의 근적외선($1-5{\mu}m$) 관측 조건을 정량적으로 조사했다. KAONICS의 기본 파장 밴드인 J, H, K, L 에 대해 대기 투과 모델을 사용하여 PWV(Precipitable Water Vapour)에 따른 대기투과율을 계산했으며, 각각의 파장 밴드에서 관측 한계 등급을 계산했다. 계산 결과, 두 천문대 모두 근적외선 영역에서 관측이 가능하며, 서로 비슷한 관측 능력을 가지고 있다는 결론을 얻었다.

Detection of an Impact Flash Candidate on the Moon with an Educational Telescope System

  • Kim, Eunsol;Kim, Yong Ha;Hong, Ik-Seon;Yu, Jaehyung;Lee, Eungseok;Kim, Kyoungja
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권2호
    • /
    • pp.121-125
    • /
    • 2015
  • At the suggestion of the NASA Meteoroid Environment Office (NASA/MEO), which promotes lunar impact monitoring worldwide during NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) mission period (launched Sept. 2013), we set up a video observation system for lunar impact flashes using a 16-inch educational telescope at Chungnam National University. From Oct. 2013 through Apr. 2014, we recorded 80 hours of video observation of the unilluminated part of the crescent moon in the evening hours. We found a plausible candidate impact flash on Feb. 3, 2014 at selenographic longitude $2.1^{\circ}$ and latitude $25.4^{\circ}$. The flash lasted for 0.2 s and the light curve was asymmetric with a slow decrease after a peak brightness of $8.7{\pm}0.3mag$. Based on a star-like distribution of pixel brightness and asymmetric light curve, we conclude that the observed flash was due to a meteoroid impact on the lunar surface. Since unequivocal detection of an impact flash requires simultaneous observation from at least two sites, we strongly recommend that other institutes and universities in Korea set up similar inexpensive monitoring systems involving educational or amateur telescopes, and that they collaborate in the near future.

Modeling Gamma-Ray Emission From the High-Mass X-Ray Binary LS 5039

  • Owocki, Stan;Okazaki, Atsuo;Romero, Gustavo
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권1호
    • /
    • pp.51-55
    • /
    • 2012
  • A few high-mass X-ray binaries-consisting of an OB star plus compact companion-have been observed by Fermi and ground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS) to be sources of very high energy (VHE; up to 30 TeV) ${\gamma}$-rays. This paper focuses on the prominent ${\gamma}$-ray source, LS 5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical ($e{\approx}0.24$) orbit with its companion, assumed here to be an unmagnetized compact object (e.g., black hole). Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL) rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of ${\gamma}$-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of ${\gamma}$-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV) radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the ${\gamma}$-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE ${\gamma}$-ray emission in massive-star binaries.

DubaiSat-1의 발사 후 검보정을 위한 MTF 평가 및 영상복원 기법 (MTF Assessment and Image Restoration Technique for Post-Launch Calibration of DubaiSat-1)

  • 황현덕;박원규;곽성희
    • 대한원격탐사학회지
    • /
    • 제27권5호
    • /
    • pp.573-586
    • /
    • 2011
  • MTF(modulation transfer function)는 광학 시스템의 성능을 평가하기 위하여 사용되는 중요한 파라미터 중 하나이다. 또한 열악한 우주 환경(방사능, 극한 열조건 및 전자기장 등), 대기 영향 및 시스템 성능의 저하 등으로 저하된 영상품질을 복원시켜주기 위한 파라미터로 사용될 수도 있다. 본 논문에서는 소형 지구관측위성인 DubaiSat-1이 발사된 후, 위성영상의 품질을 평가하기 위하여 MTF를 측정하였다. 일반적으로 MTF는 point source 혹은 knife-edge 방법 등과 같은 다양한 방법을 이용하여 측정되어왔다. 그러나 본 논문에서는 ISO에서 line source에 의한 MTF 측정을 표준화한 slanted-edge 방법을 이용하여 MTF를 측정하였다. Slanted-edge 방법은 전자 스틸 카메라(electronic still-picture camera)의 MTF를 측정하기 위한 ISO 12233 표준으로써, 라인스캐닝 망원경(line-scanning telescope)의 MTF를 추정하기 위하여 사용된 방법이다. 또한 PSF(point spread function) 기반으로 제작된 MTF 회선 커널(MTF convolution kernel)에 의한 MTF 보상(MTF compensation)과 영상의 노이즈 제거(image denoising)를 수행하여 영상의 품질 저하(degradation)를 완화시켰다.

Simulation of an X-ray Fresnel Zone Plate with Nonideal Factors

  • Chen, Jie;Fan, Quanping;Wang, Junhua;Yuan, Dengpeng;Wei, Lai;Zhang, Qiangqiang;Liao, Junsheng;Xu, Min
    • Current Optics and Photonics
    • /
    • 제4권1호
    • /
    • pp.9-15
    • /
    • 2020
  • Fresnel zone plates have been widely used in many applications, such as x-ray telescopes, microfluorescence, and microimaging. To obtain an x-ray Fresnel zone plate, many fabrication methods, such as electron-beam etching, ion-beam etching and chemical etching, have been developed. Fresnel zone plates fabricated by these methods will inevitably lead to some nonideal factors, which have an impact on the focusing characteristics of the zone plate. In this paper, the influences of these nonideal factors on the focusing characteristics of the zone plate are studied systematically, by numerical simulations based on scalar diffraction theory. The influence of the thickness of a Fresnel zone plate on the absolute focusing efficiency is calculated for a given incident x-ray's wavelength. The diffraction efficiency and size of the focal spot are calculated for different incline angles of the groove. The simulations of zone plates without struts, with regular struts, and with random struts are carried out, to study the effects of struts on the focusing characteristics of a zone plate. When a Fresnel zone plate is used to focus an ultrashort x-ray pulse, the effect of zone-plate structure on the final pulse duration is also discussed.

A NEW AUTO-GUIDING SYSTEM FOR CQUEAN

  • CHOI, NAHYUN;PARK, WON-KEE;LEE, HYE-IN;JI, TAE-GEUN;JEON, YISEUL;IM, MYUNGSHI;PAK, SOOJONG
    • 천문학회지
    • /
    • 제48권3호
    • /
    • pp.177-185
    • /
    • 2015
  • We develop a new auto-guiding system for the Camera for QUasars in the EArly uNiverse (CQUEAN). CQUEAN is an optical CCD camera system attached to the 2.1-m Otto-Struve Telescope (OST) at McDonald Observatory, USA. The new auto-guiding system differs from the original one in the following: instead of the cassegrain focus of the OST, it is attached to the finder scope; it has its own filter system for observation of bright targets; and it is controlled with the CQUEAN Auto-guiding Package, a newly developed auto-guiding program. Finder scope commands a very wide field of view at the expense of poorer light gathering power than that of the OST. Based on the star count data and the limiting magnitude of the system, we estimate there are more than 5.9 observable stars with a single FOV using the new auto-guiding CCD camera. An adapter is made to attach the system to the finder scope. The new auto-guiding system successfully guided the OST to obtain science data with CQUEAN during the test run in 2014 February. The FWHM and ellipticity distributions of stellar profiles on CQUEAN, images guided with the new auto-guiding system, indicate similar guiding capabilities with the original auto-guiding system but with slightly poorer guiding performance at longer exposures, as indicated by the position angle distribution. We conclude that the new auto-guiding system has overall similar guiding performance to the original system. The new auto-guiding system will be used for the second generation CQUEAN, but it can be used for other cassegrain instruments of the OST.

KVN을 위한 디지털 데이터 처리 시스템의 성능평가 (PERFORMANCE EVALUATION OF DIGITAL DATA PROCESSING SYSTEM FOR KOREAN VLBI NETWORK(KVN))

  • 오세진;노덕규;염재환;변도영;이창훈;정현수;제도홍
    • 천문학논총
    • /
    • 제22권3호
    • /
    • pp.63-73
    • /
    • 2007
  • In this paper, we introduce the performance test results of digital data processing system for KVN (Korean VLBI Network). The digital data processing system for KVN consists of DAS (Data Acquisition System) and high-speed recorder which called Mark5B system. DAS system performs the digitalization of analog radio signal through ADS-1000 gigabit sampler with 1 Gsps/2-bit and process the digital filtering of digital signal. Mark5B system records the output data of DFB (Digital Filter Bank) with about 1 Gbps. In this paper, we carried out the preliminary evaluation experiments of the KVN digital data processing system connected between DAS system and Mark5B with VSI (VLBI Standard Interface) interface which is designed for compatible in each VLBI system. We first performed all of the KVN digital data processing system connected by VSI interface in the world. In factory inspection phase, we found that the DAS system has a memory read/write error in DSM (Digital Spectrometer) by analyzing the recorded data in Mark5B system. We confirmed that the DSM memory error has been correctly solved by comparing DSM results with Mark5B results. The effectiveness of KVN digital data processing system has been verified through the preliminary experiments such as data transmission, recording with VSI interface connection and data analysis between DSM and Mark5B system. In future work, we will perform the real astronomical observation by using the KVN 21m radio telescopes so as to verify its stability and performance.

A Candidate of KVN KSP: Origins of Gamma-ray flares in AGNs

  • Lee, Sang-Sung;Kang, Sincheol;Han, Myoung-Hee;Algaba-Marcos, Juan-Carlos;Byun, Do-Young;Kim, Jeong-Sook;Kim, Soon-Wook;Kino, Motoki;Trippe, Sascha;Wajima, Kiyoaki;Miyazaki, Atsushi
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.113.1-113.1
    • /
    • 2014
  • We propose a three-year Key Science Program (KSP) consisting of VLBI monitoring observations and single dish (SD) rapid response observations (RRO). The VLBI monitoring observations are comprised of ten 24-hr observations per year (every month) of about 30 gamma-ray brigt active galactic nuclei (AGNs) with Korea VLBI Network (KVN) at 22, 43, 86, and 129 GHz. The SD RROs may consist of twelve 7-hr observations per source (every week for 3 months after triggering) of gamma-ray flaring sources with two KVN SD telescopes at 22, 43, and 86 GHz in dual polarization. We expect one or two sources per year for the SD RROs. Gamma-ray flares of AGNs are known to be occured in innermost regions of relativistic jets which radiate in whole ranges of electromagnetic spectra due to synchrotron radiation, syschrotron self absorption, inverse-compton scttering, doppler boosting etc. Possible explanations of the gamma-ray flares in AGNs are a) shocks-in-jets propagating within jet flow and b) bending of the whole jets. For both cases, we should expect changes in polarization, luminosity, particle distribution, and structures of jets at mas-scale. The multifrequency simultaneous VLBI/SD observations with KVN are the best tool for detecting such changes correlated with gamma-ray flares. This KSP proposal aims to answer the fundamental questions about the basic nature of the flares of AGNs.

  • PDF