• Title/Summary/Keyword: Technology-Fusion research

Search Result 1,083, Processing Time 0.027 seconds

A Novel Approach to Cloning and Expression of Human Thymidylate Synthase

  • Lv, Ying-Tao;Du, Pei-Juan;Wang, Qiao-Yan;Tan, Yuan;Sun, Zong-Bin;Su, Zhong-Liang;Kang, Cong-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7523-7527
    • /
    • 2013
  • Thymidylate synthase (TS) catalyzes the transfer of a methyl group from methylenetetrahydrofolate to dUMP to form dTMP. It is a primary target in the chemotherapy of colorectal cancers and some other neoplasms. In order to obtain pure protein for analysis of structure and biological function, an expression vector TS-pET28b (+) was constructed by inserting wild-type human thymidylate synthase (hTS) cDNA into pET28b (+). Then an expression strain was selected after transformation of the recombined plasmid into Rosetta (DE3). Fusion protein with His-tag was efficiently expressed in the form of inclusion bodies after IPTG induction and the content was approximately 40.0% of total bacteria proteins after optimizing expression conditions. When inclusion bodies were washed, dissolved and purified by Ni-NTA under denatured conditions, the purity was up to 90%. On SDS-PAGE and West-blotting, the protein band was found to match well with the predicted relative molecular mass-36kDa. Bioactivity was 0.1 U/mg. The results indicated that high-level expression of wild-type hTS cDNA can be achieved in prokaryotes with our novel method, facilitating research into related chemotherapy.

Biodevice Technology (바이오소자 기술)

  • Choi, Jeong-Woo;Lee, Bum-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Biodevices composed of biomolecular layer by mimicking the natural functions of cells and the interaction mechanisms of the constituted biomolecules have been developed in various industrial fields such as medical diagnosis, drug screening, electronic device, bioprocess, and environmental pollution detection. To construct biodevices such as bioelectronic devices (biomolecular diode, bio-information storage device and bioelectroluminescence device), protein chip, DNA chip, and cell chip, biomolecules including DNA, protein, and cells have been used. Fusion technology consisting of immobilization technology of biomolecules, micro/nano-scale patterning, detection technology, and MEMs technology has been used to construct the biodevices. Recently, nanotechnology has been applied to construct nano-biodevices. In this paper, the current technology status of biodevice including its fabrication technology and applications is described and the future development direction is proposed.

Microstructure and Tensile Properties of SS400 Carbon Steel and SUS430 Stainless Steel Butt Joint by Gas Metal Arc Welding

  • Poonnayom, Pramote;Chantasri, Sakchai;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The application of SS400 carbon steel and AISI430 ferritic stainless steel joint has been increased in industries because of the advantage of both metals was able to increase the service lifetime of the important structures. Therefore, a fusion welding process that could produce a sound weld and good joint properties should be optimized. This research is aimed to weld a butt joint of SS400 carbon steel and AISI430 ferritic stainless steel using Gas Metal Arc Welding (GMAW) welding process and to study the effects of welding parameters on joint properties. The experimental results were concluded as follows. The optimized welding parameter that produced the tensile strength of 448 MPa was the welding current of 110A, the welding speed of 400 mm/min and the mixed gas of $80%Ar+20%CO_2$. Increase of the welding current affected to increase and decrease the tensile strength of the joint, respectively. Lower welding current produced the incomplete bonding of the metals and indicated the low tensile strength. Microstructure investigation of the welded joint showed a columnar grain in the weld metal and a coarse grain in the heat affected zone (HAZ). The unknown hard precipitated phases were also found at the grain boundaries of the weld metal and HAZ. The hardness profile did not show the difference of the hardness on the joint that was welded by various welding currents but the hardness of the weld metal was higher than that of the other location.

Study on Printmaking Design Based on Augmented Reality Technology in Era of Digital Transformation (디지털 전환 시대의 AR기술 기반 판화 제작 연구)

  • Ren Zhipeng;Kim Yoojin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.161-170
    • /
    • 2023
  • In this study, our primary focus was on preserving the unique characteristics inherent to the medium of printmaking art, such as cultural implications and formal features, during the digital transformation of traditional printmaking. We investigated methods to incorporate augmented reality (AR) technology into the creation process of traditional printmaking. To help understand the intended fusion of traditional printmaking art and AR technology in this digital transition era, we categorized AR artworks into four types and conducted an analysis of various AR artwork examples from across the globe. From this analysis, we derived the methodologies and design directions for combining AR technology with traditional printmaking. Moreover, we created an AR printmaking piece based on the author's artwork "Spring, Summer, Fall, Winter," thereby demonstrating the significant role AR technology can play in the evolution of printmaking. Through this research, we were able to verify the potential and value of AR printmaking as an immersive art form capable of providing a more expansive narrative.

A study on aerial triangulation from multi-sensor imagery

  • Lee, Young-ran;Habib, Ayman;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.400-406
    • /
    • 2002
  • Recently, the enormous increase in the volume of remotely sensed data is being acquired by an ever-growing number of earth observation satellites. The combining of diversely sourced imagery together is an important requirement in many applications such as data fusion, city modeling and object recognition. Aerial triangulation is a procedure to reconstruct object space from imagery. However, since the different kinds of imagery have their own sensor model, characteristics, and resolution, the previous approach in aerial triangulation (or georeferencing) is performed on a sensor model separately. This study evaluated the advantages of aerial triangulation of large number of images from multi-sensors simultaneously. The incorporated multi-sensors are frame, push broom, and whisky broom cameras. The limits and problems of push-broom or whisky broom sensor models can be compensated by combined triangulation with frame imagery and vise versa. The reconstructed object space from multi-sensor triangulation is more accurate than that from a single model. Experiments conducted in this study show the more accurately reconstructed object space from multi-sensor triangulation.

  • PDF

Tribological Characteristics of Si-Diamond-Like Carbon Films in a Condition with Carbon Nanotube Ink Lubricant (Carbon Nanotube 잉크 환경에서의 Si-Diamond-Like Carbon 박막의 내마모 특성)

  • Jang, Kil-Chan;Kim, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.149-155
    • /
    • 2011
  • We investigated tribological characteristics of diamond-like carbon (DLC) in a condition with carbon nanotube (CNT) content of 1wt% in aqueous solution. Si-DLC films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process on Al6061 aluminum alloy. In this study, the deposition of DLC films was carried out in vacuum with a chamber pressure of 10-5 to 10-3 Torr achieved by mechanical pump followed by turbo molecular pump. The surface adsorbed oxygen on the Aluminum substrates was removed by passing Ar gas for 10 minutes. The RF power was maintained at 500W throughout the experiment. A buffer layer of HMDSO was deposited on the substrate to improve the adhesion of DLC coating. At this point CH4 gas was introduced in the chamber using gas flow controller and DLC coating was deposited on the buffer layer along with HMDSO for 50 min. The thickness of 1 ${\mu}m$ was obtained for DLC films on aluminum substrates The tribological properties of as synthesized DLC films were analyzed by wear test in the presence of dry air, water and lubricant such as CNT ink.

Mobile Coupon Gift-giving Motivation Disparity Fusion Model among Groups decided by giving Frequency (모바일 쿠폰 선물증여 빈도에 따른 군집별 증여동기 차이에 관한 융합모형연구)

  • Yeo, Hyun-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.7-13
    • /
    • 2016
  • Since a smart phone became popular that leads mobile era, we've faced diverse life style changes. Particularly, a mobile messenger which changes communication method from voice and video call to text based multi media messenger, leads new gift-giving culture called mobile voucher gift-giving. Although many researches have validated diverse models about digital voucher, this research utilize the model which divide motivation of gift-giving from three theories: gift-giving motivation theory, technology acceptance model, and consumer value theory. The purpose of this research is not only validate the model but also grouping by giving frequency of samples and validate disparity among groups. In conclusion, there are three groups founded and shows difference motivations.

An IBC and Certificate Based Hybrid Approach to WiMAX Security

  • Rodoper, Mete;Trappe, Wade;Jung, Edward Tae-Chul
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.615-625
    • /
    • 2009
  • Worldwide inter-operability for microwave access (WiMAX) is a promising technology that provides high data throughput with low delays for various user types and modes of operation. While much research had been conducted on physical and MAC layers, little attention has been paid to a comprehensive and efficient security solution for WiMAX. We propose a hybrid security solution combining identity-based cryptography (IBC) and certificate based approaches. We provide detailed message exchange steps in order to achieve a complete security that addresses the various kind of threats identified in previous research. While attaining this goal, efficient fusion of both techniques resulted in a 53% bandwidth improvement compared to the standard's approach, PKMv2. Also, in this hybrid approach, we have clarified the key revocation procedures and key lifetimes. Consequently, to the best of knowledge our approach is the first work that unites the advantages of both techniques for improved security while maintaining the low overhead forWiMAX.

A Convergency Study on the QR Code Perception Indoor-mobile Robot Control - Focused on Wireless System Configuration (QR 코드 인식 실내이동 로봇제어 융합연구 - 무선시스템 구성을 중심으로)

  • Lee, Jeongl-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.251-255
    • /
    • 2019
  • The QR codes are printed in sticker form and have many advantages in terms of location recognition accuracy or installation cost compared to the location recognition method, which attaches artificial indicators to ceilings or walls for low-cost location recognition, and the way in which the location is recognized by vision, to create robots that are generally applicable to all industries. In this study, it is shown that the two-dimensional square bar code applied to the robot within 3 mm of error allows the robot to be made with high accuracy and accurate location control. In particular, the fusion research, combined with various engineering technologies, describes QR code-aware indoor mobile robot control research centered on the construction of the system.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other ocean structures because of their high strength, corrosion-resistance and light weight properties. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective methode to reduce weight of the structures. Ti and Al have great differences in materials properties, and intermetallic compounds such as $Ti_3Al$, TiAl, $TiAl_3$ are easily formed at the contacting surface between Ti and Al. Thus, dissimilar welding and joining of Ti and Al are considered to be very difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50 m/min) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.