• Title/Summary/Keyword: Technology stability

Search Result 8,522, Processing Time 0.038 seconds

ON THE STABILITY OF DIFFERENTIAL SYSTEMS INVOLVING 𝜓-HILFER FRACTIONAL DERIVATIVE

  • Limpanukorn, Norravich;Ngiamsunthorn, Parinya Sa;Songsanga, Danuruj;Suechoei, Apassara
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.513-532
    • /
    • 2022
  • This paper deals with the stability of solutions to 𝜓-Hilfer fractional differential systems. We derive the fundamental solution for the system by using the generalized Laplace transform and the Mittag-Leffler function with two parameters. In addition, we obtained some necessary conditions on the stability of the solutions to linear fractional differential systems for homogeneous, non-homogeneous and non-autonomous cases. Numerical examples are also given to illustrate the behavior of solutions.

Investigation on flutter stability of three-tower suspension bridges under skew wind

  • Xinjun Zhang;Xuan-Rui Pan;Yuhan Leng;Bingze Chen
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.43-58
    • /
    • 2024
  • To ensure the flutter stability of three-tower suspension bridges under skew wind, by using the computational procedure of 3D refined flutter analysis of long-span bridges under skew wind, in which structural nonlinearity, the static wind action(also known as the aerostatic effect) and the full-mode coupling effect etc., are fully considered, the flutter stability of a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River in completion and during the deck erection is numerically investigated under the constant uniform skew wind, and the influences of skew wind and aerostatic effects on the flutter stability of the bridge under the service and construction conditions are assessed. The results show that the flutter critical wind speeds of three-tower suspension bridge under service and construction conditions fluctuate with the increase of wind yaw angle instead of a monotonous cosine rule as the decomposition method proposed, and reach the minimum mostly in the case of skew wind. Both the skew wind and aerostatic effects significantly reduce the flutter stability of three-tower suspension bridge under the service and construction conditions, and the combined skew wind and aerostatic effects further deteriorate the flutter stability. Both the skew wind and aerostatic effects do not change the evolution of flutter stability of the bridge during the deck erection, and compared to the service condition, they lead to a greater decrease of flutter critical wind speed of the bridge during deck erection, and the influence of the combined skew wind and aerostatic effects is more prominent. Therefore, the skew wind and aerostatic effects must be considered accurately in the flutter analysis of three-tower suspension bridges.

A Study on the Stability Criteria of Small Vessels (소형선박의 복원성기준 연구)

  • Kwon, Soo-Yeon;Lee, Hee-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.285-295
    • /
    • 2007
  • In order to ensure safety of small vessels, the amended Ship Safety Act will come into force on 4th. Nov. 2007. This study is performed to suggest the stability criteria of fishing vessels and cargo ships of 12m in length and over but less than 24m in length which will be new object of amended Ship Safety Act. We have analyze the dimensions of domestic small vessels and the casualty reports of capsizing accidents. According to the analyzed result, 58 ships that are in the range of the dimension are modeled and the stability calculation has been carried out. The Stability for the 58 ships has been analyzed by comparing the result that applied the selected standard in the national standard to the stability calculation. Based on the regression analysis of the model ship's allowable transverse metacentric-heights under several stability requirements, stability criteria for small fishing vessels and cargo ships are proposed.

Evaluation of Metabolic Stability of Kinsenoside, an Antidiabetic Candidate, in Rat and Human Liver Microsomes

  • Rehman, Shaheed Ur;Kim, n Sook;Choi, Min Sun;Luo, Zengwei;Yao, Guangming;Xue, Yongbo;Zhang, Yonghui;Yoo, Hye Hyun
    • Mass Spectrometry Letters
    • /
    • v.6 no.2
    • /
    • pp.48-51
    • /
    • 2015
  • Kinsenoside is a principle bioactive compound of Anoectochilus formosanus. It exhibits various pharmacological effects such as antihyperglycemic, antioxidant, anti-inflammatory, immunostimulating, and hepatoprotective activities and has recently been developed as an antidiabetic drug candidate. In this study, as part of an in vitro pharmacokinetic study, the stability of kinsenoside in rat and human liver microsomes was evaluated. Kinsenoside was found to have good metabolic stability in both rat and human liver microsomes. These results will provide useful information for further in vivo pharmacokinetic and metabolism studies.

Design Alterations of a Semiconductor Wafer Edge Grinder for the Improved Stability (반도체 Wafer용 Edge Grinding Machine의 구조 안정화를 위한 설계 개선)

  • Park, Yu Ra;Ro, Seung Hoon;Kim, Young Jo;Kil, Sa Geun;Kim, Geon Hyeong;Shin, Yun Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.56-64
    • /
    • 2016
  • It is generally accepted that the surface quality of wafer edge is mostly damaged by the vibrations of the edge grinding machine. The surface quality of wafer edge is supposed to be the most dominant factor of the cracks, scratches, burrs and chips on the edge surfaces, which are the main defects of the wafers. In this study, the structure of a wafer edge grinder has been investigated through the frequency response experiment and the computer simulation to find ways to suppress the vibrations from the structure. The main reasons of the structural vibrations were analyzed. And further the design alterations were deduced from the results of the experiment and the simulation, and applied to the machine to check the effects of those alterations and to eventually improve the structural stability. The result shows that the machine can have much improved stability with relatively simple design changes.

Improved stability of organic light-emitting diodes with lithium-quinolate doped electron transport layer

  • Choi, Sung-Hoon;Kim, Sang-Dae;Han, Kyu-Il;Lee, Se-Hee;Park, Eun-Jung;Kum, Tae-Il;Jung, Young-Kwan;Lee, Seok-Jong;Lee, Nam-Yang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.771-774
    • /
    • 2009
  • The Improved stability of organic light emitting diodes (OLEDs) containing lithium-quinolate (Liq) as the ETL doping material is investigated. The lifetime could be improved by threefold using the Liq-doped ETL structure. The improvement was attributed to the Liq-doped ETL, which improved hole-electron balance and has a good electrical stability. Additionally, when the Liq doped device was combined with an Mg/Al cathode, the OLED produced a longer lifetime than other device.

  • PDF

The Influence of Hydrotalcite Intercalated with Benzoate on UV Stability of Acrylic Coating

  • Nguyen, Thuy Duong;Nguyen, Anh Son;Thai, Thu Thuy;Pham, Gia Vu;To, Thi Xuan Hang;Olivier, Marie-Georges
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.16-22
    • /
    • 2020
  • It is important to realize that benzoate was intercalated into hydrotalcite (HTC-Bz) by the co-precipitation method. In this case, acrylic coating with 0.5 wt% HTC-Bz was deposited on carbon steel using the spin coating method. Next, the HTC-Bz structure was characterized by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). In fact, an ultraviolet vision spectroscopy (UV-Vis) was used to determine the benzoate content in HTC-Bz, and the UV absorption ability of HTC-Bz. Using electrochemical techniques, water contact angle measurement, and thermal-gravimetric analysis, we compared the protective properties before and after QUV test, hydrophobicity and the thermal stability of acrylic coating containing HTC-Bz. The obtained results showed that HTC-Bz with a plate-like structure was successfully synthesized; benzoate was intercalated into the interlayer of hydrotalcite with a concentration of 28 wt%. Additionally, it was noted that HTC-Bz has an UV absorption peak at 225 nm. In conclusion, the addition of HTC-Bz enhanced the UV stability, hydrophobicity and the thermal stability of acrylic coating.

Dynamic Characteristics and Stability of an Infrared Search and Track (적외선 탐색 및 추적장비의 동적 특성 및 안정화)

  • Choi, Jong-Ho;Park, Yong-Chan;Lee, Joo-Hyoung;Choi, Young-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • Current paper investigates the dynamic behavior and stability of an infrared search and track subjected to external disturbance having gimbal structure with three rotating axes keeping constant angular velocity in the azimuth direction. Euler-Lagrange equation is applied to derive the coupled nonlinear dynamic equation of motion of infrared search and track and the characteristics of dynamic coupling are investigated. Two equilibrium points with small variations from the nonlinear coupling system are derived and the specific condition from which a coupled equation can be three independent equations is derived. Finally, to examine the stability of system, Lyapunov direct method was used and system stability and stability boundaries are investigated.

A study on the stability boundary of a virtual spring model with a virtual mass (가상스프링 모델의 안정성 영역에 대한 가상질량의 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.15-20
    • /
    • 2016
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system. A haptic system consists of a haptic device, a sampler, a virtual rigid body and zero-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. According to the virtual mass and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. As the virtual mass increases, the value of the virtual spring to guarantee the stability gradually increases and then decreases after reaching the maximum value. These simulation results show that the addition of the virtual mass enables to expand the stability boundary of the virtual spring.

The Incapacition Method of Power System Assessing Transient Stability Index and Voltage Drop/Rise Duration Index (계통 안정도 모의를 통한 전력계통의 무력화 방안)

  • Lim, Jae-Sung;Kang, Hyun-Koo;Kim, Taek-Won;Moon, Seung-Il;Lim, Wan-Khun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.532-539
    • /
    • 2009
  • When assailing some area, it is important to consider targeting power system. This paper describes effective method that power networks are incapacitated based on assessing TSI and VDI. For this, we compose realistic scenario and analyze the simulation results in a view of stability. The simulation results show the destruction effects when occur the contingency in the specified area. To perform this process, the simulation tool PSS/E and DSAT are used.