• Title/Summary/Keyword: Technology Radar

Search Result 1,117, Processing Time 0.032 seconds

An Analysis of Instrumentation Radar's Beacon Tracking Performance Considering a Target Attitude (표적의 자세 변화를 고려한 계측 레이더의 비콘 추적 성능 분석)

  • Ryu, Chung-Ho;Ye, Sung-Hyuck;Hwang, Gyu-Hwan;Seo, Il-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.561-568
    • /
    • 2010
  • Instrumentation radar in a test range has an important role to measure target's TSPI(time, space, position, information). It is well known that it tracks a target stably using a beacon mode. But it may fail to track a target in a certain region using a beacon mode. In this paper, we modeled a simple missile shape similar to ATCMS with two beacon antenna and analyzed an antenna radiation pattern using MLFMM(Multi Level Fast Multipole Method) method. Using the analyzed result of the radiation pattern of the antenna and the attitude data of target, we simulated beacon tracking performance of an instrumentation radar. As a result of simulation, we showed that an instrumentation radar may lose the target because it tracks a area of the beacon antenna pattern.

Evaluation of the Application of Radar Data for Local Landslide Warning (국지적 산사태 발생 예보를 위한 레이더 자료의 활용성 평가)

  • Choi, Yun Seok;Choi, Cheon Kyu;Kim, Kyung Tak;Kim, Joo Hun
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.191-201
    • /
    • 2013
  • Landslide in Korea occurs generally in summer, and rainfall is a major factor to trigger landslides. This study evaluates the applicability of radar rainfall to estimate landslide occurs locally in mountainous area. Temporal changes in spatial distribution of rainfall is analyzed using radar data, and the characteristics of rainfall in landslide area during the landslide occurred in Inje, July 2006. This study shows radar rainfall field can estimate local landslides more precisely than the rainfall data from ground gauges.

Feasibility study of corner reflector for radar countermeasures and deception for conventional forces

  • Kang, Hee-Jin;Yang, Hyang-Kweon;Jo, Min-Chul;Kim, Kook-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.171-175
    • /
    • 2017
  • The high-tech large warships are minimal and they are always monitored by opponents, and become primary targets when conflicts occur. The improvement in reducing susceptibility has significant importance because it is difficult for a ship to maintain mission capability and functionality once it is damaged. Ordinary decoys are effective only under the premise that the ship has already been exposed. Traditionally, for naval vessels, techniques related to the radar have been used in military stealth techniques to ensure confidentiality. The corner reflector, on the other hand, can produce rather large radar cross sections. Continued use of deceptive systems such as chaff during operations will help to improve survivability of naval ships. From this viewpoint, corner reflector was considered for making radar countermeasures and deception technology. This paper reviews the current status of corner reflector basis decoys and the technical feasibility of corner reflectors for developing structural decoys.

Track Initiation Algorithm Based on Weighted Score for TWS Radar Tracking (TWS 레이더 추적을 위한 가중 점수 기반 추적 초기화 알고리즘 연구)

  • Lee, Gyuejeong;Kwak, Nojun;Kwon, Jihoon;Yang, Eunjeong;Kim, Kwansung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • In this paper, we propose the track initiation algorithm based on the weighted score for TWS radar tracking. This algorithm utilizes radar velocity information to calculate the probabilistic track score and applies the Non-Maximum-Suppression(NMS) to confirm the targets to track. This approach is understood as a modification of a conventional track initiation algorithm in a probabilistic manner. Also, we additionally apply the weighted Hough transform to compensate a measurement error, and it helps to improve the track detection probability. We designed the simulator in order to demonstrate the performance of the proposed track initiation algorithm. The simulation result show that the proposed algorithm, which reduces about 40 % of a false track probability, is better than the conventional algorithm.

Real-time Implementation of Phased RF Sub-Array MIMO Algorithm for Radar (레이다용 Phased RF Sub-Array MIMO 알고리즘 실시간 구현)

  • Wansik Kim;Hwanyong Yeo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.517-522
    • /
    • 2023
  • Existing radars have been developed by applying RF sub-array algorithms, and recently, fully digital Multiple-Input Multiple-Output (MIMO) radar algorithms have been implemented for vehicle radars. In this paper, the radar algorithm applying the Phased MIMO method to the hardware of the RF sub-array method, which is an unsecured technology, was implemented and verified in real time. In order to secure RF sub-array Phased MIMO algorithm technology, a hardware structure for FPGA-based real-time signal processing was presented, and performance was first predicted through design and simulation. Through this, the digital signal of FPGA-based broadband MIMO FMCW radar The processing hardware was developed, and the Phased MIMO radar algorithm of the RF sub-Array method was finally implemented and verified in real time. Based on this, it is judged that it will be possible to secure and apply core technologies necessary for terahertz band radar in the future.

Design of Multi-Mode Radar Signal Processor for UAV Detection (무인기 탐지를 위한 멀티모드 레이다 신호처리 프로세서 설계)

  • Lee, Seunghyeok;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • Radar systems are divided into the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar depending on the transmission waveform. In particular, the PD radar is advantageous for long-range target detection, and the FMCW radar is suitable for short-range target detection. In this paper, we present design and implementation results for a multi-mode radar signal processor (RSP) that can support both PD and FMCW radar systems to detect unmanned aerial vehicles (UAVs) at short distances as well as long distances. The proposed radar signal processor can be implemented based on Altera Cyclone-IV FPGA with 19,623 logic elements, 9,759 registers, and 25,190,400 memory bits. The logic elements and registers of the proposed radar signal processor are reduced by approximately 43% and 30%, respectively, compared to the sum of logic elements and registers of the conventional PD radar and FMCW radar signal processor.

A Study on Detection Probability Reduction of LPI Radar's Platform (저피탐(LPI) 레이더 탑재 플랫폼의 피탐 확률 감소에 관한 연구)

  • Park, Tae-Yong;Kim, Wan-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1243-1248
    • /
    • 2014
  • In General, LPI radar's detection probability by ES equipments is lower than that of conventional pulsed radar because of very low transmitting power and high antenna gain etc. LPI radar is a kind of RF stealth technique such as RCS reduction design. Therefore the ultimate goal of LPI radar is detection probability reduction by opponent. If one of the two, RCS value or LPI radar performance is not sufficient, own platform will be found first by opponent. In this paper, some considerations are suggested for detection probability reduction.

The Study on Coordinate Transformation of the Tracking Radar in NARO Space Center (나로우주센터 추적레이더의 좌표 변환에 관한 연구)

  • Shin, Han-Seop;Choi, Jee-Hwan;Kim, Dae-Oh;Kim, Tae-Hyung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.116-121
    • /
    • 2011
  • The tracking radar systems in NARO space center are used in order to acquire the TSPI (Time, Space, and Position Information) data of the launch vehicle. The tracking radar produce the measurements of tracked targets in the radar-centered coordinate system. When the tracking radar is in the Cartesian/Polar tracking mode, the state vector data is sent in radar-centered Cartesian/Polar coordinate system to RCC. RCC also send the slaving data in Test Range coordinate system to the tracking radar. So, the tracking radars have to transform the slaving data in Test Range coordinate system into in radar-centered coordinate system. In this study, we described the coordinate transformation between radar-centered coordinate system and Test Range coordinated system.

A Study on the Effects of ARPA/Radar Simulation Training

  • Shin, Daewoon;Park, Youngsoo;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.294-300
    • /
    • 2017
  • In this study, a survey was conducted among students who received ARPA/radar simulation training in order to verify the effect of training. An effective training method based on the analysis results was also proposed. Furthermore, this study analyzed full mission simulation conducted over one semester, and found that training effect increased as time passed. The survey showed improvement in skills related to radar/ARPA utilization, ARPA decoding, ship handling, and overall skill. Students responded practical skills improved more than theoretical knowledge, and also analysis showed that ship handling skills had a larger effect than radar decoding skills on improving overall skill, therefore proposed that theoretical education regarding the functions of radar and ARPA should be reinforced in ARPA/radar simulation training.

A Case Study on Rainfall Observation and Intensity Estimation using W-band FMCW Radar (W밴드 FMCW 레이더를 이용한 강우 관측 및 강우 강도 추정 사례 연구)

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1430-1437
    • /
    • 2019
  • In this paper, we proposed a methodology for estimating rainfall intensity using a W-band FMCW automotive radar signal which is the core technology of autonomous driving car. By comparing and analyzing the results of rainfall and non-rainfall observation, we found that the reflection intensity of the automotive radar is changed with rainfall intensity. We could confirm the possibility of deriving the quantitative precipitation estimation using the methodology derived from this result. In addition it can be possible to develop a new paradigm of precipitation observation technique by observing various events together with the weather radar and the ground rainfall observation equipment.