Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
Journal of Intelligence and Information Systems
/
v.20
no.4
/
pp.1-23
/
2014
Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.
The Korean fresh pork loins in vacuum packaged were obtained from three different Korean export companies and investigated for microbiological and sensory properties. The fresh pork loins were stored at 2$^{\circ}C$ for 50 days and analyzed with an interval of 5$\sim$10 days. The results were as follows: The overall numbers of total plate counts and coliform bacteria were higher in swab method than in meat sampling method. The total plate counts in the loins from the company I were maintained low levels ($\prec$10$^5$ cfu/$cm^2$ or $\prec$10$^5$ cfu/g) for entire storage periods(50 days at 2$^{\circ}C$), whereas the loins from the company III had high levels when they were compared to the domestic standard for the allowance limit. The samples from the company III showed that total plate counts were over 106 after about 30 days when determined by meat sampling method and total plate counts were over 106 after 15 days when determined by swab method. The overall numbers of coliform bacteria were also significantly lowest in the samples from the company I, whereas they were highest in the company III. Therefore, all meat companies will have to make an effort to prevent bacterial contamination in each stage such as slaughtering, marketing and consumer in order to ensure the production of safe meat and the extension of shelf-life. For fresh products, scores of intramuscular fat were higher in samples form the companies II and III than those from the company I when visibly evaluated with the standard. There were no significant differences in scores of meat color, drip and fresh meat flavor. However, the samples from the company I had the lowest score of off-flavor and highest score of overall acceptability. For cooked products, there were no significant differences in meat flavor, off-flavor, juiciness and overall acceptability.
LEE Kang-Ho;HONG Byeong-Il;CHOI Byeong-Dae;KANG Seok-Joong;RUCK Ji-Hee;JUNG Byung-Chun
Korean Journal of Fisheries and Aquatic Sciences
/
v.31
no.3
/
pp.423-428
/
1998
The effective extraction methods and chemical components of crude polysaccharides of ascidian tunics were investigated. Tow extraction conditions, autoclaving or enzyme treatment, were applied. The proximate composition of ascidian tunics was not much different between those dried in raw (containing pigments) and those acetone treated and dried (decolorized), showing $50\%$ of carbohydrate and $40\%$ of protein. It was possible to extract up to $10\%$ of crude polysaccharides from ascidian tunics regardless of the extraction methods, autoclaving or enzyme treatment. In case of the latter the extraction yield by neutrase was higher than that with alkalase (Novo co.) or mixture 2000 (Pacific chemical co.). The most effective enzyme concentration and extraction time appeared to be 24 hrs of extraction with $3\%$ neutrase. On the other hand, in autoclave treatment, 6 hrs extraction showed most desirable extraction yield, about $9.7\%$. The compositions of amino acid of decolorized ascidian tunic (acetone treated group) and the crude polysaccharide from the autoclaving (water solubles) or neutrase treatment (enzyme digestibles) were similar to each other. Histidine was the highest both in the neutrase and autoclave treatment group and the yield were $29.2\%,\;20.4\%$, respectively, followed by aspartic acid and glutamic acid. Among the minerals, the content of Ca was significantly high, followed by Mg and Na.
Nowadays, it is common that most consumers are purchasing goods in e-stores. The e-stores eager to attract, revisit, retain, and finally convert them into loyal customers. The e-store marketers have planned and executed numerous marketing efforts. As one of the marketing activities, e-store managers attempt to build web sites that meet customers' functional and psychological needs. A wide array of studies has been done to identify factors that could affect customers' response of web sites. Majority of studies were conducted to verify technology-related and functional variables of the website which facilitate transactions and enhance customer responses such as purchase intention and website loyalty. However, there has been little research on the external cues of website and psychological variables of consumer that could have positive influences on customer response. The purpose of this study is to investigate the influence of e-store personality on e-store loyalty through mediating variables such as e-store identification, e-store trust, and e-store engagement. The authors of this study develop the model and set up the six main hypotheses and a set of sub-hypotheses based on a literature review, shown in
. This model is composed of four paths such as dimensions of e-store personality${\rightarrow}$e-store identification, e-store identification${\rightarrow}$e-store loyalty, e-store identification ${\rightarrow}$e-store trust${\rightarrow}$e-store loyalty, and e-store identification${\rightarrow}$e-store engagement${\rightarrow}$e-store loyalty. II. Research Method Ladies under 30s were the respondents of this survey. Data were collected from January 20th to February 26th in 2010. A total of 200 questionnaires were distributed and 169 respondents were analysed finally to test hypotheses because 31 questionnaires had incorrect or missing responses. SPSS 12.0 and LISREL 7.0 program were used to test frequency, reliability, factor, and structural equation modeling analysis. III. Result and Conclusion According to results from factor analysis, eigen value was over 1.0 and items which were below 0.6 were deleted. Consequently, 9 factors(% of total variance is 72.011%) were searched. All Cronbach's ${\alpha}$ values are over the recommended level(${\alpha}$ > 0.7). The overall fit indices are acceptable such as ${\chi}^2$=2028.36(p=0.00), GFI=0.87, AGFI=0.82, CFI=0.81, IFI=0.92, RMR=0.075. All factor loadings were over the recommended level. As the result of discriminant validity check with chi-square difference test between paired constructs, each construct has good discriminant validity. The overall fit indices of final model are acceptable such as ${\chi}^2$=340.73(df=36, p=0.00), GFI=0.92, AGFI=0.81, CFI=0.91, IFI=0.91, RMR=0.085. As test results, 5 out of 6 hypotheses are supported because there are statistically significant casual relationships in structural equation model, shown in
. First of all, hypothesis 1 is partially supported because sub-hypothesis 1-1 and 1-2 are supported, whereas sub-hypothesis 1-3, 1-4, and 1-5 are rejected. Specifically, it reveals that warmth and sophistication dimensions in e-store personality have positive influence on e-store identification, however, activity, progressiveness, and strictness does not have any significant relationship on e-store identification. Secondly, hypothesis 2 was supported. Therefore, it can be said that e-store identification has a positive impact on e-store trust. Thirdly, hypothesis 3 is also supported. Hence, there is a positive relationship between e-store identification and e-store engagement. Fourthly, hypothesis 4 is supported too. e-store identification has a positive influence on e-store loyalty. Fifthly, hypothesis 5 is also accepted. This indicates that e-store trust is a precedent variable which positively affects e-store loyalty. Lastly, it reveals that e-store engagement has a positive impact on e-store loyalty. Therefore, hypothesis 6 is supported. The findings of the study imply that some dimensions of e-store personality have a positive influence on e-store identification, and that e-store identification has direct and indirect influence on e-store loyalty through e-store trust and e-store engagement positively. These results also suggest that the e-store identification in e-store personality is a precedent variable which positively affects e-store loyalty directly and indirectly through e-store trust and engagement as a mediating variable. Therefore, e-store marketers need to implement website strategy based on e-store personality, e-store identification, e-store trust, and e-store engagement to meet customers' psychological needs and enhance e-store loyalty. Finally, the limitations and future study directions based on this study are discussed.
Due to the development of digital technology, studies regarding smart wear integrating daily life have rapidly increased. However, consumer research about perception and attitude toward smart clothing hardly could find. The purpose of this study was to identify innovative characteristics and perceived risk of smart clothing and to analyze the influences of theses factors on product attitudes and intention to adopt. Specifically, five hypotheses were established. H1: Perceived attributes of smart clothing except for complexity would have positive relations to product attitude or purchase intention, while complexity would be opposite. H2: Product attitude would have positive relation to purchase intention. H3: Product attitude would have a mediating effect between perceived attributes and purchase intention. H4: Perceived risks of smart clothing would have negative relations to perceived attributes except for complexity, and positive relations to complexity. H5: Product attitude would have a mediating effect between perceived risks and purchase intention. A self-administered questionnaire was developed based on previous studies. After pretest, the data were collected during September, 2006, from university students in Korea who were relatively sensitive to innovative products. A total of 300 final useful questionnaire were analyzed by SPSS 13.0 program. About 60.3% were male with the mean age of 21.3 years old. About 59.3% reported that they were aware of smart clothing, but only 9 respondents purchased it. The mean of attitudes toward smart clothing and purchase intention was 2.96 (SD=.56) and 2.63 (SD=.65) respectively. Factor analysis using principal components with varimax rotation was conducted to identify perceived attribute and perceived risk dimensions. Perceived attributes of smart wear were categorized into relative advantage (including compatibility), observability (including triability), and complexity. Perceived risks were identified into physical/performance risk, social psychological risk, time loss risk, and economic risk. Regression analysis was conducted to test five hypotheses. Relative advantage and observability were significant predictors of product attitude (adj $R^2$=.223) and purchase intention (adj $R^2$=.221). Complexity showed negative influence on product attitude. Product attitude presented significant relation to purchase intention (adj $R^2$=.692) and partial mediating effect between perceived attributes and purchase intention (adj $R^2$=.698). Therefore hypothesis one to three were accepted. In order to test hypothesis four, four dimensions of perceived risk and demographic variables (age, gender, monthly household income, awareness of smart clothing, and purchase experience) were entered as independent variables in the regression models. Social psychological risk, economic risk, and gender (female) were significant to predict relative advantage (adj $R^2$=.276). When perceived observability was a dependent variable, social psychological risk, time loss risk, physical/performance risk, and age (younger) were significant in order (adj $R^2$=.144). However, physical/performance risk was positively related to observability. The more Koreans seemed to be observable of smart clothing, the more increased the probability of physical harm or performance problems received. Complexity was predicted by product awareness, social psychological risk, economic risk, and purchase experience in order (adj $R^2$=.114). Product awareness was negatively related to complexity, meaning high level of product awareness would reduce complexity of smart clothing. However, purchase experience presented positive relation with complexity. It appears that consumers can perceive high level of complexity when they are actually consuming smart clothing in real life. Risk variables were positively related with complexity. That is, in order to decrease complexity, it is also necessary to consider minimizing anxiety factors about social psychological wound or loss of money. Thus, hypothesis 4 was partially accepted. Finally, in testing hypothesis 5, social psychological risk and economic risk were significant predictors for product attitude (adj $R^2$=.122) and purchase intention (adj $R^2$=.099) respectively. When attitude variable was included with risk variables as independent variables in the regression model to predict purchase intention, only attitude variable was significant (adj $R^2$=.691). Thus attitude variable presented full mediating effect between perceived risks and purchase intention, and hypothesis 5 was accepted. Findings would provide guidelines for fashion and electronic businesses who aim to create and strengthen positive attitude toward smart clothing. Marketers need to consider not only functional feature of smart clothing, but also practical and aesthetic attributes, since appropriateness for social norm or self image would reduce uncertainty of psychological or social risk, which increase relative advantage of smart clothing. Actually social psychological risk was significantly associated to relative advantage. Economic risk is negatively associated with product attitudes as well as purchase intention, suggesting that smart-wear developers have to reflect on price ranges of potential adopters. It will be effective to utilize the findings associated with complexity when marketers in US plan communication strategy.
The exchange between buyers and sellers in the industrial market is changing from short-term to long-term relationships. Long-term relationships are governed mainly by formal contracts or informal agreements, but many scholars are now asserting that controlling relationship by using formal contracts under environmental dynamism is inappropriate. In this case, partners will depend on each other's flexibility or interdependence. The former, flexibility, provides a general frame of reference, order, and standards against which to guide and assess appropriate behavior in dynamic and ambiguous situations, thus motivating the value-oriented performance goals shared between partners. It is based on social sacrifices, which can potentially minimize any opportunistic behaviors. The later, interdependence, means that each firm possesses a high level of dependence in an dynamic channel relationship. When interdependence is high in magnitude and symmetric, each firm enjoys a high level of power and the bonds between the firms should be reasonably strong. Strong shared power is likely to promote commitment because of the common interests, attention, and support found in such channel relationships. This study deals with environmental dynamism in high-tech industry. Firms in the high-tech industry regard it as a key success factor to successfully cope with environmental changes. However, due to the lack of studies dealing with environmental dynamism and supply chain commitment in the high-tech industry, it is very difficult to find effective strategies to cope with them. This paper presents the results of an empirical study on the relationship between environmental dynamism and supply chain commitment in the high-tech industry. We examined the effects of consumer, competitor, and technological dynamism on supply chain commitment. Additionally, we examined the moderating effects of flexibility and dependence of supply chains. This study was confined to the type of high-tech industry which has the characteristics of rapid technology change and short product lifecycle. Flexibility among the firms of this industry, having the characteristic of hard and fast growth, is more important here than among any other industry. Thus, a variety of environmental dynamism can affect a supply chain relationship. The industries targeted industries were electronic parts, metal product, computer, electric machine, automobile, and medical precision manufacturing industries. Data was collected as follows. During the survey, the researchers managed to obtain the list of parts suppliers of 2 companies, N and L, with an international competitiveness in the mobile phone manufacturing industry; and of the suppliers in a business relationship with S company, a semiconductor manufacturing company. They were asked to respond to the survey via telephone and e-mail. During the two month period of February-April 2006, we were able to collect data from 44 companies. The respondents were restricted to direct dealing authorities and subcontractor company (the supplier) staff with at least three months of dealing experience with a manufacture (an industrial material buyer). The measurement validation procedures included scale reliability; discriminant and convergent validity were used to validate measures. Also, the reliability measurements traditionally employed, such as the Cronbach's alpha, were used. All the reliabilities were greater than.70. A series of exploratory factor analyses was conducted. We conducted confirmatory factor analyses to assess the validity of our measurements. A series of chi-square difference tests were conducted so that the discriminant validity could be ensured. For each pair, we estimated two models-an unconstrained model and a constrained model-and compared the two model fits. All these tests supported discriminant validity. Also, all items loaded significantly on their respective constructs, providing support for convergent validity. We then examined composite reliability and average variance extracted (AVE). The composite reliability of each construct was greater than.70. The AVE of each construct was greater than.50. According to the multiple regression analysis, customer dynamism had a negative effect and competitor dynamism had a positive effect on a supplier's commitment. In addition, flexibility and dependence had significant moderating effects on customer and competitor dynamism. On the other hand, all hypotheses about technological dynamism had no significant effects on commitment. In other words, technological dynamism had no direct effect on supplier's commitment and was not moderated by the flexibility and dependence of the supply chain. This study makes its contribution in the point of view that this is a rare study on environmental dynamism and supply chain commitment in the field of high-tech industry. Especially, this study verified the effects of three sectors of environmental dynamism on supplier's commitment. Also, it empirically tested how the effects were moderated by flexibility and dependence. The results showed that flexibility and interdependence had a role to strengthen supplier's commitment under environmental dynamism in high-tech industry. Thus relationship managers in high-tech industry should make supply chain relationship flexible and interdependent. The limitations of the study are as follows; First, about the research setting, the study was conducted with high-tech industry, in which the direction of the change in the power balance of supply chain dyads is usually determined by manufacturers. So we have a difficulty with generalization. We need to control the power structure between partners in a future study. Secondly, about flexibility, we treated it throughout the paper as positive, but it can also be negative, i.e. violating an agreement or moving, but in the wrong direction, etc. Therefore we need to investigate the multi-dimensionality of flexibility in future research.
Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.
Choi, Jae Ho;Xiang, Jun-Yong;Moon, Hyun Sil;Choi, Il Young;Kim, Jae Kyeong
Journal of Intelligence and Information Systems
/
v.18
no.3
/
pp.153-169
/
2012
Exhibitions have played a key role of effective marketing activity which directly informs services and products to current and potential customers. Through participating in exhibitions, exhibitors have got the opportunity to make face-to-face contact so that they can secure the market share and improve their corporate images. According to this economic importance of exhibitions, show organizers try to adopt a new IT technology for improving their performance, and researchers have also studied services which can improve the satisfaction of visitors through analyzing visit patterns of visitors. Especially, as smart technologies make them monitor activities of visitors in real-time, they have considered booth recommender systems which infer preference of visitors and recommender proper service to them like on-line environment. However, while there are many studies which can improve their performance in the side of new technological development, they have not considered the choice factor of visitors for booth recommender systems. That is, studies for factors which can influence the development direction and effective diffusion of these systems are insufficient. Most of prior studies for the acceptance of new technologies and the continuous intention of use have adopted Technology Acceptance Model (TAM) and Extended Technology Acceptance Model (ETAM). Booth recommender systems may not be new technology because they are similar with commercial recommender systems such as book recommender systems, in the smart exhibition environment, they can be considered new technology. However, for considering the smart exhibition environment beyond TAM, measurements for the intention of reuse should focus on how booth recommender systems can provide correct information to visitors. In this study, through literature reviews, we draw factors which can influence the satisfaction and reuse intention of visitors for booth recommender systems, and design a model to forecast adaptation of visitors for booth recommendation in the exhibition environment. For these purposes, we conduct a survey for visitors who attended DMC Culture Open in November 2011 and experienced booth recommender systems using own smart phone, and examine hypothesis by regression analysis. As a result, factors which can influence the satisfaction of visitors for booth recommender systems are the effectiveness, perceived ease of use, argument quality, serendipity, and so on. Moreover, the satisfaction for booth recommender systems has a positive relationship with the development of reuse intention. For these results, we have some insights for booth recommender systems in the smart exhibition environment. First, this study gives shape to important factors which are considered when they establish strategies which induce visitors to consistently use booth recommender systems. Recently, although show organizers try to improve their performances using new IT technologies, their visitors have not felt the satisfaction from these efforts. At this point, this study can help them to provide services which can improve the satisfaction of visitors and make them last relationship with visitors. On the other hands, this study suggests that they managers along the using time of booth recommender systems. For example, in the early stage of the adoption, they should focus on the argument quality, perceived ease of use, and serendipity, so that improve the acceptance of booth recommender systems. After these stages, they should bridge the differences between expectation and perception for booth recommender systems, and lead continuous uses of visitors. However, this study has some limitations. We only use four factors which can influence the satisfaction of visitors. Therefore, we should development our model to consider important additional factors. And the exhibition in our experiments has small number of booths so that visitors may not need to booth recommender systems. In the future study, we will conduct experiments in the exhibition environment which has a larger scale.
Purpose: In 2003, we decided to buy a PET/CT, at the time, it was the latest cancer diagnostic medical equipment. Equipment company was offered the marketing of collaboration operation because the highly cost of PET/CT. However, this hospital's choice was own purchase way. In this study we evaluated the collaboration operation way by post-mortem analysis to the current situation. Materials and Methods: From 2004 until 2008, five years, we investigate the revenue analysis the number of PET/CT cases about own purchase way and collaboration operation way according (ABC costing). Results: The year 2004, own purchase way is 4 billion 9 thousand 2 hundred million won in deficit, the collaboration operation way is 1 billion 1 thousand 7 hundred million won in deficit. The year 2005, own purchase way is 1 billion 5 hundred million won in deficit, collaboration operation way is 8 thousand 7 hundred million won in deficit. However, the year 2006, own purchase way is 5 billion 1thousand 3 hundred million won in surplus, collaboration operation way is 9 thousand 9 hundred million won in deficits. The year 2007 and 2008, revenue of own purchase way is more increased but the collaboration operation way is more decreased. From the year 2004 to 2008, subtotal of own purchase way is 10 billion 8 thousand 8 hundred won in surplus, sub-total of collaboration operation way is 6 billion 7 thousand million won in deficit. Conclusion: Own purchase way has been a big benefit occurs and to reflect the equipment price, the collaboration operation way became to deficit continues. In other words, the problem of collaboration operation way showed us. When you buy the high cost Equipment, consideration will be risk and economic analysis of variance, the appropriate of the initial investment cost, clinical diagnostic needs and etc.
Research regarding respiration rate, off-flavor related material and freshness maintenance effect of active MA mini-packaging on perilla leaves has been carried in this study. Respiration rate was highly maintained at high oxygen treatments ($CO_2:O_2:N_2$=0:30:70 and 0:50:50), higher than non-treatment and low oxygen treatments (6:2:92, 0:10:90) during the storage period, and ethylene production was relatively higher. However, off-flavor related materials, acetaldehyde and ethanol production was noticeably low. Weight losses of non-treatment and low-oxygen treatment were about 1.8 and 1.4%, respectively. At the fifth day of storage there was no weight loss. Ascorbic acid content was 13.3 mg/100 g F.W. at the first day of storage. At the third day of storage non-treatment showed the lowest value of ascorbic acid, 8.8 mg/100 g F.W. Ascorbic acid content of active MA treatment gradually decreased without a striking difference as the storage day extended. Chlorophyll content was the lowest at the fifth day of storage with non-treatment, 47.5 (SPAD-502 unit) while the active MA treatment maintained high level of chlorophyll content, 53.0. Sensory evaluation (vision) showed that marketability gradually decreased but was maintained in high oxygen treatments (0:30:70 and 0:50:50), even at the fifth day of storage. Occurrence of off-flavor in non-treatment at the fifth day of storage was extremely low, 2.6; whereas high in high oxygen treatment, 3.4. Active MA packaging maintained freshness two more days at room temperature (about $27^{\circ}C$).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.