The purpose of this research is to develop Blended-TBL(Team Based Learning) model that emphasizes the active participation and teamwork of students in on-off blended learning environment, and apply it into the college course and explore whether self-regulated learning between one group pretest and posttest is different. For this, this research investigated the concept and the characteristics of Team Based Learning, and developed the Blended-TBL Model to apply it into the college course, and finally prove effects of Blended-TBL model on self-regulated learning using Motivated Strategies for Learning Questionnaire (MSLQ). The participants in this study were 57 college students. They participated in on-off blended-TBL course for 15weeks. Participants followed the content grounded and the problem solving steps in collaborative team-based learning. This research practiced a quantitative research to find out the statistical difference of the self-regulated learning between pretest and posttest using SPSS. The result revealed that Blended-TBL students improved self-regulated learning including motivation, cognitive, metacognitive, and resource management. Based on this result, this research discussed the effects of Blended-TBL on Self-Regulated Learning and suggested the further study.
The importance of e-Learning, which supports to study anywhere and anytime, has been pointed out for improving education. There have been various research papers on e-Learning system for educations. Most of literatures have focused on guiding the student or measuring understanding their level etc. Design method of e-Learning system has not been discussed based on structure and analysis of the class. In this paper, scheme of the class is proposed by analyzing and structuring class, then design method of e-Learning system is discussed based on it.
Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
Journal of Information Processing Systems
/
v.13
no.2
/
pp.204-214
/
2017
Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.
International Journal of Computer Science & Network Security
/
v.22
no.11
/
pp.331-337
/
2022
Smart learning is augmented with digital, context-aware, and adaptable technologies to encourage students to learn better and faster. To ensure that digital learning is successful and that implementation is efficient, it is critical that the dimensions of digital learning are arranged correctly and that interactions between the various elements are merged in an efficient and optimal manner. This paper builds and discusses a basic framework for smart learning in the digital age, aimed to improve students' abilities and performance in learning. The proposed framework consists of five dimensions: Teacher, Technology, Learner, Digital content, and Evaluation. The Teacher and Learner dimensions operate on two levels: (a) an abstract level to fit in knowledge and skills or interpersonal characteristics and (b) a concrete level in the form of digital devices used by teachers and learners. Moreover, this paper proposes asynchronous online course delivery model. An Arabic smart learning platform has been developed, based on these smart learning core dimensions and the asynchronous online course delivery model, because despite the official status of this language in many countries, there is a lack of Arabic platforms to teach Arabic. Moreover, many non-native Arabic speakers around the world have expressed an interest in learning it. The Arabic digital platform consists of over 70 lessons classified into three competence levels: beginner, intermediate, and advanced, delivered by Arabic experts and Arabic linguists from various Arab countries. The five dimensions are described for the Arabic platform in this paper. Learner dimension is the Arabic and non-Arabic speakers, Teacher dimension is Arabic experts and Arabic linguistics, Technology dimension consists of technology for Arabic platform that includes web design, cloud computing, big data, etc. The digital contents dimension consists of web-based video, records, etc. The evaluation dimension consists of Teachers rating, comments, and surveys.
The Journal of Asian Finance, Economics and Business
/
v.7
no.10
/
pp.481-489
/
2020
The study examines the role of facilitating conditions and user habits in the use of technology in Online Learning Platform (OLP) in Indonesia. The adoption of online learning, persistence, and learning results in online platforms is essential for ensuring that education technology is implemented and gets as much value as possible. People who use technology and systems will embrace new technologies even more. This quantitative study is based on a survey of 254 respondents, who were active users of the technology, and considers the facilitating conditions and user habits variables. Two research hypotheses were tested using the Partial Least Square-Structural Equation Modeling method. Cronbach's Alpha, path coefficient, AVE, R-square, T-test were applied. The results showed that the factors significantly influence the Online Learning Platform technology behavioral intention. This impact is primarily associated with the availability of the resources required to use OLP technology. The availability of these resources includes supporting infrastructures such as widespread Internet access, easy access to mobile devices, and file sizes that affect access speed. The findings of this study suggest that it is necessary to introduce and increase the availability of resources for using OLP technology, and familiarize people with the technology features.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.3
/
pp.792-812
/
2022
Multi-agent systems often need to achieve the goal of learning more effectively for a task through coordination. Although the introduction of deep learning has addressed the state space problems, multi-agent learning remains infeasible because of the joint action spaces. Large-scale joint action spaces can be sparse according to implicit or explicit coordination structure, which can ensure reasonable coordination action through the coordination structure. In general, the multi-agent system is dynamic, which makes the relations among agents and the coordination structure are dynamic. Therefore, the explicit coordination structure can better represent the coordinative relationship among agents and achieve better coordination between agents. Inspired by the maximization of social group utility, we dynamically construct a factor graph as an explicit coordination structure to express the coordinative relationship according to the utility among agents and estimate the joint action values based on the local utility transfer among factor graphs. We present the application of such techniques in the scenario of multiple intelligent vehicle systems, where state space and action space are a problem and have too many interactions among agents. The results on the multiple intelligent vehicle systems demonstrate the efficiency and effectiveness of our proposed methods.
Although conceptual and empirical researches on the technological learning is increasing rapidly, a few empirical researches of technological learning processes have been undertaken, taking into account a reality of learning processes of a firm. In order to analyze the learning processes of technological knowledges, based on integrative organizational learning theory, this study investigated technological learning processes by analyzing 13 technology development projects of one company with case study research design. Results of the empirical analyses suggested two taxonomy of technological learning processes. First are tour group of technological learning processes derived by the dimension of flow of cognitive and behavioral learning which is explained by the technological competency level of a firm. The other is two group of technological learning processes derived by the dimension of relative difficulty of cognitive and behavioral learning which is explained by the technology characteristics. Finally, the managerial implications for effective management of technological learning and limitations are discussed.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.9
/
pp.3169-3185
/
2021
The majority of students in higher education institutions are among generation Z. They have always depended on e-learning to support their learning activities. Therefore, higher education institutions should provide an attractive e-learning platform. E-learning interface design should be reviewed frequently to smoothen the interaction between students and the e-learning system. It is because interface design that fulfils generation Z students' preferences and expectations may upsurge their participation in e-learning. However, interface design has continually been condemned and turn out to be part of the problem that contributes to the failure of e-learning. Lack of consideration about generation Z students' preferences towards the interface design of e-learning is the factor that leads to these causes. Therefore, this study focused on identifying design characteristics of colour and graphic elements of e-learning from generation Z students' perception. This research involved a purposive sampling method for questionnaire among students of generation Z. The findings from this study could help e-learning developers to design the interface of e-learning that is suitable for generation Z students that will consider color and graphic as important characteristics.
Purpose: The purpose of the study is to learn the importance of self-directed learning about career-preparation behavior of department of dental technology students. Methods: Using the questionnaire, the department of dental technology in Gyeongnam Province conducted a survey of students of department of dental technology at A and B college for one month from May 15, 2019 through June 15, 2019, and finally 204 students were surveyed for Self-esteem, Self-determination, Self-efficacy, Internal control, College life adaptation, Self-directed learning, and Career-preparation behavior. Results: Self-esteem among students has been shown to improve self-directed learning by increasing the stress of college life, and self-efficacy has only a direct effect on self-directed learning. In addition, self-determination and internal control of department of dental technology students were found to be variables that have a common positive effect on college life adaptation and self-directed learning. In addition, college life adaptation gives direct positive effect to self-directed learning, but indirect effect through self-directed learning was found to be stronger than direct effect on career-preparation behavior, and the career-preparation behavior of students was further strengthened through self-directed learning. Conclusion: The changes in college restructuring and various policies also suggest that students should actively seek ways to instill certainty about their major's vision and career path within the college rather than deciding their future through extreme measures such as academic secession at a time when anxiety and uncertainty about their career is strong.
International Journal of Advanced Culture Technology
/
v.6
no.4
/
pp.303-308
/
2018
Demand is increasing rapidly in recent years than supply to machine learning professionals. To alleviate this gap, user-friendly machine learning software that can be used by non-specialists has emerged, which is Machine Learning-as-a-Service(MLaaS). MLaaS provides services that enable businesses to easily leverage ML capabilities without expertise. In this paper, we will compare and analyze features, interfaces, supporting programming language, ML framework, and Machine Learning services of MLaaS, to help companies easily use ML service.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.