• Title/Summary/Keyword: Technological forecasting

Search Result 88, Processing Time 0.023 seconds

국내 민간항공산업 기술수준 예측

  • 김성배;황규승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.355-364
    • /
    • 1990
  • In the classical research, technological forecasting was used in the field of substitution of a new technology product for a old in the developed countries. But in the developing or underdeveloped countries, more interested in the forecasting of technological level in certain industry than technological forecasting in certain product. This article shows the forecasting method of technological level by using a procedure of AHP(Analytical Hierarchy Process). With the historical data of the technological levels in the Korean Civil Aerospace(KCA) industry using AHP questionaire, the Gompertz curve was used to forecast the technological levels of KCA industry.

  • PDF

Technological Forecasting and Its Application to Military R&D Programming (기술예측 방법론 및 이의 군사연구계획에의 응용)

  • Lee Sang-Jin;Lee Jin-Ju
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.111-125
    • /
    • 1976
  • This paper is to explore technological forecasting methodologies and their application to military R&D programming. Among a number of forecasting methodologies, eight frequently used methods are explained. They are; Delphi method, analogy, growth curve, trend extrapolation, analytical model, breakthrough, normative method, and combined method. Due to the characteristic situation of a developing country, the application of technological forecasting to the Korean military R&D programming is limited. Therefore, only two forecasting methods such as Delphi and normative method are utilized in the development of a decision model for the military R&D programming. The model consists of a dynamic programming using decision tree model, which optimizes the total cost to equip a certain military item under a given range of risk during a given period. Some pitfalls in forecasting methodologies and of the model are discussed.

  • PDF

Empirical Study for the Technological Forecasting using Delphi Method

  • Kim, Yon-Hyong
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.425-434
    • /
    • 2002
  • In this paper, we evaluated the technological forecasting based on questionnaires of experts working in internet-banking industry. We prepared questionnaires on the 13 items. We examined specialties of respondents, relative importance of research contents, expected time of realization, likelihood of conviction on the expected time of realization, and their opinions on the levels of domestic's research and development comparing with advanced standards on each item. And we made various analysis based on data collected from Delphi method.

A Hybrid Technological Forecasting Model by Identifying the Efficient DMUs: An Application to the Main Battle Tank (효율적 DMU 선별을 통한 개선된 기술수준예측 방법: 주력전차 적용을 중심으로)

  • Kim, Jae-Oh;Kim, Jae-Hee;Kim, Sheung-Kown
    • Journal of Technology Innovation
    • /
    • v.15 no.2
    • /
    • pp.83-102
    • /
    • 2007
  • This study extends the existing method of Technology Forecasting with Data Envelopment Analysis (TFDEA) by incorporating a ranking method into the model so that we can reduce the required number of DMUs (Decision Making Units). TFDEA estimates technological rate of change with the set of observations identified by DEA(Data Envelopment Analysis) model. It uses an excessive number of efficient DMUs(Decision Making Units), when the number of inputs and outputs is large compare to the number of observations. Hence, we investigated the possibility of incorporating CCCA(Constrained Canonical Correlation Analysis) into TFDEA so that the ranking of DMUs can be made. Using the ranks developed by CCCA(Constrained Canonical Correlation Analysis), we could limit the number of efficient DMUs that are to be used in the technology forecasting process. The proposed hybrid model could establish technology frontiers with the efficient DMUs for each generation of technology with the help of CCCA that uses the common weights. We applied our hybrid model to forecast the technological progress of main battle tank in order to demonstrate its forecasting capability with practical application. It was found that our hybrid model generated statistically more reliable forecasting results than both TFDEA and the regression model.

  • PDF

Agent Oriented Business Forecasting

  • Shen, Zhiqi;Gay, Robert
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.156-163
    • /
    • 2001
  • Business forecasting is vital to the success of business. There has been an increasing demand for building business forecasting software system to assist human being to do forecasting. However, the uncertain and complex nature makes is a challenging work to analyze, design and implement software solutions for business forecasting. Traditional forecasting systems in which their models are trained based on small collection of historical data could not meet such challenges at the information explosion over the Internet. This paper presents an agent oriented business forecasting approach for building intelligent business forecasting software systems with high reusability. Although agents have been applied successfully to many application domains. little work has been reported to use the emerging agent oriented technology of this paper is that it explores how agent can be used to help human to manage various business forecasting processes in the whole business forecasting life cycle.

  • PDF

A Comparative Study of Technological Forecasting Methods with the Case of Main Battle Tank by Ranking Efficient Units in DEA (DEA기반 순위선정 절차를 활용한 주력전차의 기술예측방법 비교연구)

  • Kim, Jae-Oh;Kim, Jae-Hee;Kim, Sheung-Kown
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.2
    • /
    • pp.61-73
    • /
    • 2007
  • We examined technological forecasting of extended TFDEA(Technological Forecasting with Data Envelopment Analysis) and thereby apply the extended method to the technological forecasting problem of main battle tank. The TFDEA has the possibility of using comparatively inefficient DMUs(Decision Making Units) because it is based on DEA(Data Envelopment Analysis), which usually leads to multiple efficient DMUs. Therefore, TFDEA may result in incorrect technological forecasting. Instead of using the simple DEA, we incorporated the concept of Super-efficiency, Cross-efficiency, and CCCA(Constrained Canonical Correlation Analysis) into the TFDEA respectively, and applied each method to the case study of main battle tank using verifiable practical data sets. The comparative analysis shows that the use of CCCA with TFDEA results in very comparable prediction accuracies with respect to MAE(Mean Absolute Error), MSE(Mean Squared Error), and RMSE(Root Mean Squared Error) than using the concept of Super-efficiency and Cross-efficiency.

An Adaptive Framework for Forecasting Demand and Technological Substitution

  • Kang, Byung-Ryong;Han, Chi-Moon;Yim, Chu-Hwan
    • ETRI Journal
    • /
    • v.18 no.2
    • /
    • pp.87-106
    • /
    • 1996
  • This paper proposes a new model as a framework for forecasting demand and technological substitution, which can accommodate different patterns of technological change. This model, which we named, "Adaptive Diffusion Model", is formalized from a conceptual framework that incorporates several underlying factors determining the market demand for technological products. The formulation of this model is given in terms of a period analysis to improve its explanatory power for dynamic processes in the real world, and is described as a continuous form which approximates a discrete derivation of the model. In order to illustrate the applicability and generality of this model, time-series data of the diffusion rates for some typical products in electronics and telecommunications market have been empirically tested. The results show that the model has higher explanatory power than any other existing model for all the products tested in our study. It has been found that this model can provide a framework which is sufficiently robust in forecasting demand and innovation diffusion for various technological products.

  • PDF

An Analytic Network Process(ANP) Approach to Forecasting of Technology Development Success : The Case of MRAM Technology (네트워크분석과정(ANP)을 이용한 기술개발 성공 예측 : MRAM 기술을 중심으로)

  • Jeon, Jeong-Hwan;Cho, Hyun-Myung;Lee, Hak-Yeon
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.309-318
    • /
    • 2012
  • Forecasting probability or likelihood of technology development success has been a crucial factor for critical decisions in technology management such as R&D project selection and go or no-go decision of new product development (NPD) projects. This paper proposes an analytic network process (ANP) approach to forecasting of technology development success. Reviewing literature on factors affecting technology development success has constructed the ANP model composed of four criteria clusters : R&D characteristics, R&D competency, technological characteristics, and technological environment. An alternative cluster comprised of two elements, success and failure is also included in the model. The working of the proposed approach is provided with the help of a case study example of MRAM (magnetic random access memory) technology.

A Study on 2040 Technology Forecasting using Delphi Survey in Korean Medicine (한의약 분야의 2040년 델파이 기술예측조사 연구)

  • Kwon, Soo Hyun;Kim, Dongsu;Chung, Keun Ha;Koo, Ki Hoon;Kim, Dongjoon;Woo, Jong-Min;Ahn, Mi Young;Heo, Shin Hee;Kwon, Young Kyu
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.1-15
    • /
    • 2016
  • Objectives : This is a study for technological forecasting, aiming to find out the promising future technologies in KM(Korean Medicine) and deduce implications for the research and development of KM. Methods : The first pool of 145 technological tasks related to KM were composed by reviewing the existing data related to technological forecasting. The steering committee for the research set 99 final technological tasks. With the deduced technological tasks, mini-Delphi(2-round) method was conducted and 6 research items were used-the importance, realization time, urgency, technological competitiveness, the main agent that will push forward the task, and obstacles. Results : As a result on the time when the technology will be realized, 58 out of 99 technologies(59%) were predicted to be realized in the same year domestically and globally. The average of the importance of the 99 technological tasks was 72.9. Among them. As for the main agent to push forward the research and development of future technologies, 'industry-academic cooperation' took the highest portion at 58.7%, and regarding the obstacles to realize technological tasks, the lack of infrastructure(research funds) was the highest at 33.6%. Conclusions : This study shows that the development of basic technologies in the technologies of Korean medicine is insufficient and it is believed that the development of basic technologies is urgent to promote the development of application technologies.

The Selection of Growth Models in Technological Forecasting

  • Oh, Hyun-Seung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.1
    • /
    • pp.120-134
    • /
    • 1991
  • Various technological forecasting models have been proposed to represent the time pattern of technological growths. Of six such models studied, some models do significantly better than others, especially at low penetration levels, in predicting future levels of growth. Criteria for selecting an appropriate model for technological growth model are examined in this study. Two major characteristics were selected which differentiate the various models ; the skew of the curve and the underlying assumptions regarding the variance of the error structure of the model. Although the use of statistical techniques stil requires some subjective input and interpretations, this study provides some practical procedures in the selection of technological growth models and helps to reduce or control the potential source of judgmental error inconsistencies in the analyst's decision.

  • PDF