• Title/Summary/Keyword: Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

Search Result 54, Processing Time 0.03 seconds

Selection of Environmentally Conscious Manufacturing's Program Using Multi-Criteria Decision Making: A Case Study in Electronic Company

  • Sutapa, I. Nyoman;Panjaitan, Togar W.S.
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.123-127
    • /
    • 2011
  • Nowadays, green purchasing, stop global warming, love the mother earth, and others that related to environment become hot issues. Manufactures industries tend to more active and responsive to those issues by adopting green strategies or program like Environmentally Conscious Manufacturing (ECM). In this article, an electronic company had applied 12 ECM Program and tries to choose one of those programs using 6 criteria, such as total cost involved, quality, recyclable material, process waste reduction, packaging waste reduction, and regulation compliance. By using multi-criteria decision making model, i.e. Analytical Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and Modified TOPSIS methods, the ECM Program 9 (Open pit) is the best option.

TOPSIS-Based Multi-Objective Shape Optimization for a CRT Funnel (TOPSIS 를 적용한 CRT 후면유리의 다중목적 형상최적설계)

  • Lee, Kwang-Ki;Han, Jeong-Woo;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.729-736
    • /
    • 2011
  • The technique for order preference by similarity to ideal solution (TOPSIS) is regarded as a classical method of multiple attribute decision making (MADM), often used to solve various decision-making or selection problems. It is based on the concept that the chosen alternative should have the shortest distance from the positive ideal solution and the farthest distance from the negative ideal solution. The TOPSIS can be applied to a design process for carrying out multi-objective shape optimization wherein the best and worst alternatives are to be decided. In this paper, multi-objective shape optimization using the TOPSIS and Rational Bezier curve was applied to the funnel of a cathode-ray tube (CRT). In order to minimize the weight and first principal stress, a new multi-objective shape optimization methodology is proposed, wherein the relative-closeness coefficients of the TOPSIS are defined as the performance indices of a multi-objective function and evaluated by response surface models. This methodology enables the designer to decide on the best solution from a number of design specification groups by examining the various conflicts between the weight and the first principal stress.

A Study on Optimal Site Selection for the Artificial Recharge System Installation Using TOPSIS Algorithm

  • Lee, Jae One;Seo, Minho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.161-169
    • /
    • 2016
  • This paper is intended to propose a novel approach to select an optimal site for a small-scaled artificial recharge system installation using TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) with geospatial data. TOPSIS is a MCDM (Multi-Criteria Decision Making) method to choose the preferred one of derived alternatives by calculating the relative closeness to an ideal solution. For applying TOPSIS, in the first, the topographic shape representing optimal recovery efficiency is defined based on a hydraulic model experiment, and then an appropriate surface slope is determined for the security of a self-purification capability with DEM (Digital Elevation Model). In the second phase, the candidate areas are extracted from an alluvial map through a morphology operation, because local alluvium with a lengthy and narrow shape could be satisfied with a primary condition for the optimal site. Thirdly, a shape file over all candidate areas was generated and criteria and their values were assigned according to hydrogeologic attributes. Finally, TOPSIS algorithm was applied to a shape file to place the order preference of candidate sites.

Parameteric Assessment of Water Use Vulnerability of South Korea using SWAT model and TOPSIS (SWAT 모형과 TOPSIS 기법을 이용한 우리나라 물이용 취약성 평가)

  • Won, Kwyang Jai;Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.647-657
    • /
    • 2015
  • This study assessed the water use vulnerability for 12 basins of South Korea. The annual runoff of 12 basins are derived using a Soil and Water Assessment Tool (SWAT) and the calculated runoff per unit area and population are compared with each basin. The 18 indicators are selected in order to assess the vulnerability. Those are classified by aspects of demand, loss and supply of water use. Their weighting values used Entropy method to determine objective weights. To quantitatively assess the water use vulnerability, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) based on multi-criteria decision making are applied. The results show that the water availability vulnerability of Hyeongsan River has the highest value followed by Sapgyo River; Dongjin River; Seomjin River; Anseong River; Mangyung River; Nakdong River; Tamjin River; Youngsan River, Geum River; Taehwa River; and Han River. The result of this study has a capability to provide references for the index deveopment of climate change vulnerability assessment.

Vendor Selection Using TOPSIS and Optimal Order Allocation (TOPIS를 이용한 공급업체 선정과 최적주문량 결정)

  • Kim, Joon-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • A vendor selection problem consists of two different kinds of decision making. First one is to choose the best suppliers among all possible suppliers and the next is to allocate the optimal quantities of orders among the selected vendors. In this study, an integration of the technique for order preference by similarity to ideal solution (TOPSIS) and a multi-objective mixed integer programming (MOMIP) is developed to account for all qualitative and quantitative factors which are used to evaluate and choose the best group of vendors and to decide the optimal order quantity for each vendor. A solution methodology for the vendor selection model of multiple-vendor, multiple-item with multiple decision criteria and in respect to finite vendor capacity is presented.

Disaster Recovery Priority Decision of Total Information System for Port Logistics : Fuzzy TOPSIS Approach (항만물류종합정보시스템의 재난복구 우선순위결정 : 퍼지 TOPSIS 접근방법)

  • Kim, Ki-Yoon;Kim, Do-Hyeong
    • Journal of Information Technology Services
    • /
    • v.11 no.3
    • /
    • pp.1-16
    • /
    • 2012
  • This paper is aimed to present a fuzzy decision-making approach to deal with disaster recovery priority decision problem in information system. We derive an evaluation approach based on TOPSIS(Technique for Order Performance by Similarity to Ideal Solution), to help disaster recovery priority decision of total information system for port logistics in a fuzzy environment where the vagueness and subjectivity are handled with linguistic terms parameterized by trapezoidal fuzzy numbers. This study applies the fuzzy multi-criteria decision-making method to determine the importance weight of evaluation criteria and to synthesize the ratings of candidate disaster recovery system. Aggregated the evaluators' attitude toward preference, then TOPSIS is employed to obtain a crisp overall performance value for each alternative to make a final decision. This approach is demonstrated with a real case study involving 4 evaluation criteria(system dependence, RTO, loss, alternative business support), 7 information systems for port logistics assessed by 5 evaluators from Maritime Affairs and Port Office.

Determination of Forest Road Construction Priority Order Using Multiple Criteria Decision Making Methods (다기준의사결정법(多基準意思決定法)에 의한 임도개설순위(林道開設順位)의 결정(決定))

  • Cha, Du Song;Cho, Koo Hyun;Kim, Jong Yoon
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.149-157
    • /
    • 1996
  • The applications of multiple criteria decision making(MCDM) methods were investigated to determine the priority order in forest road construction for timber harvesting and silvicultrual activities in 22 regions. In this paper, MCDM methods have five methods from two kinds of models. The one is non-compensatory preference model including maximin and maximax method; the other is compensatory preference model including simple additive weighting method(SAW), hierarchical additive weighting method(HAW) and technique for order preference by similarity to ideal solution(TOPSIS), SAW and TOPSIS methods turned out to be the most adequate for forest road construction priority order among the five methods tested in this study.

  • PDF

Selection framework of representative general circulation models using the selected best bias correction method (최적 편이보정 기법의 선택을 통한 대표 전지구모형의 선정)

  • Song, Young Hoon;Chung, Eun-Sung;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.337-347
    • /
    • 2019
  • This study proposes the framework to select the representative general circulation model (GCM) for climate change projection. The grid-based results of GCMs were transformed to all considered meteorological stations using inverse distance weighted (IDW) method and its results were compared to the observed precipitation. Six quantile mapping methods and random forest method were used to correct the bias between GCM's and the observation data. Thus, the empirical quantile which belongs to non-parameteric transformation method was selected as a best bias correction method by comparing the measures of performance indicators. Then, one of the multi-criteria decision techniques, TOPSIS (Technique for Order of Preference by Ideal Solution), was used to find the representative GCM using the performances of four GCMs after the bias correction using empirical quantile method. As a result, GISS-E2-R was the best and followed by MIROC5, CSIRO-Mk3-6-0, and CCSM4. Because these results are limited several GCMs, different results will be expected if more GCM data considered.

A supplier selection method using the TOPSIS technique (TOPSIS 기법을 이용한 공급자 선정 방법)

  • 김종래;김규태
    • Korean Management Science Review
    • /
    • v.14 no.2
    • /
    • pp.1-17
    • /
    • 1997
  • Many companies in these days have pursued an outsourcing policy to survive in a highly competitive world market. To effectively deal with the outsourcing policy, it is required that the companies have a useful method to rationally evaluate a supplier's performance from a viewpoint of a company's strategy and in a comparative-integrated manner. In this paper, we examined the relative importance of supplier selection criteria for a company's strategy by conducting a survey and proposed "Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)" as one of the plausible techniques to evaluate a supplier's total performance. A hypothetical case study is presented to demonstrate the applicability of the method.

  • PDF

TOPSIS-Based Decision-Making Model for Demolition Method Selection

  • Lee, Hyung Yong;Cho, Jae Ho;Son, Bo Sik;Chae, Myung Jin;Lim, Nam Gi;Chun, Jae Youl
    • Architectural research
    • /
    • v.23 no.4
    • /
    • pp.67-73
    • /
    • 2021
  • An efficient demolition process requires the optimum method selection considering stability, economic feasibility, environment, and workability. In reality the construction cost and period are priority concerns, and safe construction methods are neglected. In addition, the choosing demolition method is often determined subjectively by experienced field engineers. This research paper presents a multi-criteria decision-making method using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to select the optimum demolition method. Three experienced demolition engineers' opinions were used to develop the TOPSIS model. The case study showed that the preferences of ten attribute measurements for demolition method selection. Authors suggested the most preferable demolition method for the case study project.