• 제목/요약/키워드: Technical parameter

검색결과 343건 처리시간 0.029초

Analyzing behavior of circular concrete-filled steel tube column using improved fuzzy models

  • Zheng, Yuxin;Jin, Hongwei;Jiang, Congying;Moradi, Zohre;Khadimallah, Mohamed Amine;Safa, Maryam
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.625-637
    • /
    • 2022
  • Axial compression capacity (Pu) is a significant yet complex parameter of concrete-filled steel tube (CFST) columns. This study offers a novel ensemble tool, adaptive neuro-fuzzy inference system (ANFIS) supervised by equilibrium optimization (EO), for accurately predicting this parameter. Moreover, grey wolf optimization (GWO) and Harris hawk optimizer (HHO) are considered as comparative supervisors. The used data is taken from earlier literature provided by finite element analysis. ANFIS is trained by several population sizes of the EO, GWO, and HHO to detect the best configurations. At a glance, the results showed the competency of such ensembles for learning and reproducing the Pu behavior. In details, respective mean absolute errors along with correlation values of 4.1809% and 0.99564, 10.5947% and 0.98006, and 4.8947% and 0.99462 obtained for the EO-ANFIS, GWO-ANFIS, and HHO-ANFIS, respectively, indicated that the proposed EO-ANFIS can analyze and predict the behavior of CFST columns with the highest accuracy. Considering both time and accuracy, the EO provides the most efficient optimization of ANFIS and can be a nice substitute for experimental approaches.

Probabilistic earthquake risk consideration of existing precast industrial buildings through loss curves

  • Ali Yesilyurt;Seyhan O. Akcan;Oguzhan Cetindemir;A. Can Zulfikar
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.565-576
    • /
    • 2024
  • In this study, the earthquake risk assessment of single-story RC precast buildings in Turkey was carried out using loss curves. In this regard, Kocaeli, a seismically active city in the Marmara region, and this building class, which is preferred intensively, were considered. Quality and period parameters were defined based on structural and geometric properties. Depending on these parameters, nine main sub-classes were defined to represent the building stock in the region. First, considering the mean fragility curves and four different central damage ratio models, vulnerability curves for each sub-class were computed as a function of spectral acceleration. Then, probabilistic seismic hazard analyses were performed for stiff and soft soil conditions for different earthquake probabilities of exceedance in 50 years. In the last step, 90 loss curves were derived based on vulnerability and hazard results. Within the scope of the study, the comparative parametric evaluations for three different earthquake intensity levels showed that the structural damage ratio values for nine sub-classes changed significantly. In addition, the quality parameter was found to be more effective on a structure's damage state than the period parameter. It is evident that since loss curves allow direct loss ratio calculation for any hazard level without needing seismic hazard and damage analysis, they are considered essential tools in rapid earthquake risk estimation and mitigation initiatives.

벡터제어 유도전동기의 자기동조 퍼지 속도제어 기법 (A Self-Tuning Fuzzy Speed Control Method for an Induction Motor)

  • 김동신;한우용;이창구;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1111-1113
    • /
    • 2003
  • This paper proposes an effective self-turning algorithm based on Artificial Neural Network (ANN) for fuzzy speed control of the indirect vector controlled induction motor. Indirect vector control method divides and controls stator current by the flux and the torque producing current so that the dynamic characteristic of induction motor may be superior. However, if motor parameter changes, the flux current and the torque producing one's coupling happens and deteriorates the dynamic characteristic. The fuzzy speed controller of an induction motor has the robustness over the effect of this parameter variation than a conventional PI speed controller in some degree. This paper improves its adaptability by adding the self-tuning mechanism to the fuzzy controller. For tracking the speed command, its membership functions are adjusted using ANN adaptation mechanism. This adaptability could be embodied by moving the center positions of the membership functions. Proposed self-tuning method has wide adaptability than existent fuzzy controller or PI controller and is proved robust about parameter variation through Matlab/Simulink simulation.

  • PDF

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

On Beck's column with shear and compressibility

  • Cveticanin, L.J.;Atanackovic, T.M.
    • Structural Engineering and Mechanics
    • /
    • 제6권7호
    • /
    • pp.747-756
    • /
    • 1998
  • In this paper the influence of rotary inertia, shear and compressibility on the value of the critical force for the Beck's column is analyzed. The constitutive equation is of Engesser's type. As a result, the critical load parameter for which instability of flutter type occurs is calculated for several values of the column's parameters.

인지적 청각 특성을 이용한 고립 단어 전화 음성 인식 (Isolated-Word Speech Recognition in Telephone Environment Using Perceptual Auditory Characteristic)

  • 최형기;박기영;김종교
    • 대한전자공학회논문지TE
    • /
    • 제39권2호
    • /
    • pp.60-65
    • /
    • 2002
  • 본 논문에서는, 음성 인식률 향상을 위하여 청각 특성을 기반으로 한 GFCC(gammatone filter frequency cepstrum coefficients) 파라미터를 음성 특징 파라미터로 제안한다. 그리고 전화망을 통해 얻은 고립단어를 대상으로 인식실험을 수행하였다. 성능비교를 위하여 MFCC(mel frequency cepstrum coefficients)와 LPCC(linear predictive cepstrum coefficient)를 사용하여 인식 실험을 하였다. 또한, 각 파라미터에 대하여 전화망의 채널 왜곡 보상기법으로 CMS(cepstral mean subtraction)를 도입한 방법과 적용시키지 않은 방법으로 인식실험을 하였다. 실험 결과로서, GFCC를 사용하여 인식을 수행한 방법이 다른 파라미터를 사용한 방법에 비해 향상된 결과를 얻었다.

A Study of the Formation Process of the Fabric Drapes

  • Mizutani, Chiyomi;Baba, Takeichirou;Amano, Toshihiko
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.111-111
    • /
    • 2003
  • In our experiments using a new apparatus, the drape formation process was found to consist of three stages, seeds generation, their development and the final stabilizing stages. A new parameter R evaluating the shape of the drape was defined in terms of the vertical projection of the drape. Both drape coefficient and R-parameter are expected to be useful for analyzing the formation process of the fabric drape quantitatively.

  • PDF

유도전동기의 강인 속도 제어기에 관한 연구 (A Study on the Robust Speed Controller of Induction Motor)

  • 변황우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.612-615
    • /
    • 1997
  • In this paper, a robust speed controller considering the effect of uncertainty (plant parameter variation. external load disturbance. unmodeled and nonlinear dynamics etc..) for induction motor is proposed. Firstly. the dynamic model at nominal case of induction motor is estimated. Based on the estimated model. the IPSC ( Integral - Proportional Speed Controller) is designed. Then a DTRC (Dead-time Robust Controller) combining DTC ( Dead-time Compensator) & SRC (Simple Robust Controller) is designed to reduce the effects of parameter variation and external disturbance. Some simulated results are provided to demonstrate the effectiveness of the proposed controller.

  • PDF

AN EXISTENCE OF THREE DIFFERENT NON-TRIVIAL SOLUTIONS FOR DISCRETE ANISOTROPIC EQUATIONS WITH TWO REAL PARAMETERS

  • Ahmed A.H., Alkhalidi;Haiffa Muhsan B., Alrikabi;Mujtaba Zuhair, Ali
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권4호
    • /
    • pp.855-867
    • /
    • 2022
  • This study finds three different solutions (3-Sol's) for the fourth order nonlinear discrete anisotropic equations (DAE) with real parameter. We use the variational method(VM) and 𝜙p-Laplacian operator (𝜙p-LO) to prove the main results. In the following paper, we take the parameters λ, 𝜇 such that λ > 0 and 𝜇 ≥ 0 into consideration.

적응 퍼지 P+ID 제어기를 이용한 BLDC 전동기의 속도제어 (Speed Control of BLDC Motor Drive Using an Adaptive Fuzzy P+ID Controller)

  • 권정진;한우용;신동웅;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1172-1174
    • /
    • 2002
  • An adaptive fuzzy P + ID controller for variable speed operation of BLDC motor drives is presented in this paper. Generally, a conventional PID controller is most widely used in industry due to its simple control structure and ease of design. However, the PID controller suffers from the electrical machine parameter variations and disturbances. To improve the tracking performance for parameter and load variations, the controller proposed in this paper is constructed by using an adaptive fuzzy logic controller in place of the proportional term in a conventional PID controller. For implementing this controller, only one additional parameter has to be adjusted in comparison with the PID controller. An adaptive fuzzy controller applied to proportional term to achieve robustness against parameter variations has simple structure and computational simplicity. The controller based on optimal fuzzy logic controller has an self-tuning characteristics with clustering. Computer simulation results show the usefulness of the proposed controller.

  • PDF