• Title/Summary/Keyword: Technical Strength

Search Result 1,364, Processing Time 0.023 seconds

Setting and Strength Properties of Mortar Containing Steel Furnace Slag Dust

  • Choi, Yun-Wang;Chung, Jee-Seung;Moon, Dae-Joong;Shin, Hwa-Cheol;Jang, Lee-Duck
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.193-196
    • /
    • 2003
  • In this paper, the experimental investigation for the setting properties of cement paste, the consistency and strength properties of mortar with steel furnace slag dust was performed and compared with those of cement paste and mortar with ground granulated blast furnace slag. When steel furnace slag dust was replaced with normal portland cement, setting time and flow value indicated to good results like as mortar with ground granulated blast furnace slag. However, mortar with steel furnace slag dust expressed to appreciably strength devaluation according to containing ratio, and did not indicate the pozzolanic reaction like as ground granulated blast furnace slag.

  • PDF

Effect of Binder on Coating Layer Structure and Surface Strength of Coated Paper (바인더가 도공층 구조 및 도공지의 표면 강도에 미치는 영향)

  • 이용규;황석우
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.63-72
    • /
    • 1998
  • This research was intended to evaluate the effect of carboxymethylcellulose(CMC) on the coating structure and surface strength of coated paper prepared with amphoteric latex based coating color. Printability and optical properties of coated papers were compared. The influence of the consolidation behavior of coating color on the coating structure and the surface strength of coated paper was investigated. Compared with the conventional anionic latex, amphoteric latex formed bulkyer, smoother and more porous coating layer, which in turn, restricted binder migration in the coating layers, and facilitated immobilization of coating colors. However, dry pick strength of coated paper was decreased. The addition of CMC to these systems had strongly influenced on. the consolidation behavior and porosity in the dry state, through forming the network structure of coating layers by the interaction with amphoteric latex particles. Thus, printability and optical properties of coated papers were improved. Results indicated that amphoteric latex could be practically applied to the paper coating to improve printability and optical properties of coated papers.

  • PDF

Stock Preparations for the Opacity Improvement of Printing Paper (인쇄용지의 불투명도 향상을 위한 지료조성)

  • 최성훈;김봉용
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • This study was carried out to improve the opacity of printing paper. Conventional filler loading enhanced the opacity of paper, but subsequently caused reduction of paper strength of paper. We try to seek a new filler loading method so-called beater loading that enhances opacity of paper as well as sustained desire strength. In our experiment, comparing to direct loading method, the beater loading method enhanced 0.8% of opacity and 0.2% of brightness. This also decreased the rates of strength reduction of paper. Therefore, the results obtained in this study indicated that beater loading was a very effective method to improve the opacity of paper while not to decreased so much of paper strength.

  • PDF

Fibers Flocculation and Physical Properties Changes of Paper Depending on Cationic Polymer Addition (양이온성 고분자 첨가에 따른 섬유의 응집 및 종이 물성 변화)

  • Yoon, Doo-Hoon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.10-16
    • /
    • 2005
  • Flocculation of fibers and its distribution in paper are related to flocculation mechanisms, retention and drainage. Relationship between flocculation mechanisms and physical properties of paper has not been fully studied. In this study, flocculation of fibers was investigated by changing cationic polymers for flocculation mechanism analysis. Flocculation of stock and physical strength of paper were similar when using branched PAM and linear PAM with fillers and microparticles Flocculation and physical strength were also similar when using branched PAM and linear PAM and microparticles without fillers. In that case excessive flocculation was not produced, so formation was improved but physical strength was decreased. When using branched PAM instead of linear PAM with filler addition, drainage time was decreased, air permeability was improved, and physical strength was increased.

Properties of GPAM Emulsion for a Wet Strength Agent (습윤 지력증강제로서 GPAM Emulsion의 특성)

  • Kim, Bong-Yong;Son, Dong-Jin;Kim, Hak-Sang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.3
    • /
    • pp.36-40
    • /
    • 2007
  • It has been problematic to repulp the dry broke treated with permanent wet strength agents like PAE, UF and MF. Solution type GPAM has the benefit of easy repulping but it has problems of cocross-linking and tends to gel. Therefore, the product concentration must be lower than 10% to reduce the gel generation problem. We developed emulsion type GPAM by an inverse emulsion technology to resolve both the repulping problem with permanent wet strength agents and the stability problem of GPAM solution products.

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System

  • Jo, Jung-Yeon;Min, Choon-Ki;Shin, Jun-Seop
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.459-463
    • /
    • 2006
  • For the purpose of developing liner board for water-resistant corrugated board in the cold chain system, several types of base paper for corrugated board were purchased from the market and 6 different boards were produced in the paperboard mill by applying the chemicals on the base paper. Then, water-moisture resistant performance and physical properties of the boards were evaluated and compared each other. The liner board which is dried at high temperature with pressure by the Condebelt showed a superior performance in strength over conventional liner boards. Strength of the board increased by surface chemical treatment up to 60% of compressive strength and 30% of bursting strength. Starch insolubilization with Ammonium-Zirconium -Carbonate and surface coating with a surface size and a moisture resistant chemical on CK paper showed the best result. Therefore, this method was recommended to produce the outer liner board for water -resistant corrugated board.

  • PDF

Effects of Spangle Size on the Mechanical Properties of Galvanized Steel Sheets (용융아연도금강판 코팅층 접합강도에 미치는 스팽글 크기의 영향)

  • Hong, Moon-Hi;Lee, Ju-Youn;Paik, Doo-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.831-838
    • /
    • 2011
  • Effects of spangle size and crystallographic characteristics on the surface appearance, galling properties, and adhesive strength of hot-dip galvanized steel sheets have been investigated. Both spangle size and crystallographic orientation measured by optical microscopy, scanning electron microscopy, and X-ray diffraction were identified as critical factors influencing the galvanized coating performance. By decreasing the spangle size, surface appearance and galling properties related to the friction coefficient were significantly improved. However, low temperature adhesive-strength with small spangle galvanized steel sheets showed lower values compared to commercially used galvanized coating. The variation of adhesive strength in terms of spangle size has been clarified.

Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs

  • Keskin, Riza S.O.;Arslan, Guray
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.697-715
    • /
    • 2013
  • Numerous studies have been conducted to understand the shear behavior of reinforced concrete (RC) beams since it is a complex phenomenon. The diagonal cracking strength of a RC beam is critical since it is essential for determining the minimum amount of stirrups and the contribution of concrete to the shear strength of the beam. Most of the existing equations predicting the diagonal cracking strength of RC beams are based on experimental data. A powerful computational tool for analyzing experimental data is an artificial neural network (ANN). Its advantage over conventional methods for empirical modeling is that it does not require any functional form and it can be easily updated whenever additional data is available. An ANN model was developed for predicting the diagonal cracking strength of RC slender beams without stirrups. It is shown that the performance of the ANN model over the experimental data considered in this study is better than the performances of six design code equations and twelve equations proposed by various researchers. In addition, a parametric study was conducted to study the effects of various parameters on the diagonal cracking strength of RC slender beams without stirrups upon verifying the model.

Effect of Coating of Liner Components with Oxidized Starch on Properties of Corrugated Box (산화전분 코팅에 의한 골판지 상자의 물성 변화)

  • 안병국;안원영
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.47-53
    • /
    • 1999
  • The effect of coating of liner components with oxidized starch on the properties of corrugated box was examined . Coating was carried out on liner components of B flute, single-wall corrugated board(SK180/S120/K200) , and corrugated box was made from the treated corrugated board. Box was made in a regular slotted container (RSC) style, and box compression strength was determined in the direction of top-to-bottom compression. The compression strength of box coated on outside liner component showed 15.4% improvement for 1.58g㎡ coating. On the other hand, the strength of box coated on outside liner component showed only 1.45% improvement for 1.41g/㎡ coating and 3.46% improvement for 2.32g/㎡ coating. Coating on inside liner component with oxidized starch at low coating weight more significantly improved box compression strength than coating on outside liner component, and the improvement was marked at the coating weight of 1.5-2.5g/㎡. In estimating top-to-bottom box compression strength, the experimental values were closer to the calculated values from McKee's equation suing edgewise compression strength of the combined board measured by column crush test than those from Kellicutt's equation using compression strength of component paperboards measured by ring crush test.

  • PDF

Improvement of Pulp Handsheet Strength Properties by Polylactic Acids

  • Hou, Q.X.;Chai, X.S.;Yang, R.;Ragauskas, A.J.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.395-400
    • /
    • 2006
  • Polylactic acids polymer (PLA) was applied as an additive to improve the strength properties of handsheets prepared from three unbleached southern pine kraft pulps with different kappa number and an aspen bleached chemithermomechanical pulp (BCTMP). The results showed that PLA could greatly improve the tensile and burst strength of the pulp handsheets. Heat pressing effect was also important to enhance the strength properties. For unbleached kraft pulps, it was found that an appropriate amount of residual lignin in pulps had a positive effect on the handsheets strength improvement when adding PLA. The thickness of the handsheet did not change the PLA strengthening effect. In general, PLA effect on tear strength improvement could be neglected. However, it had a significant effect on the improvement of tear strength for the aspen BCTMP handsheets not containing sufficient amount of fines.

  • PDF