DOI QR코드

DOI QR Code

Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs

  • Keskin, Riza S.O. (Department of Civil Engineering, Yildiz Technical University) ;
  • Arslan, Guray (Department of Civil Engineering, Yildiz Technical University)
  • Received : 2012.01.25
  • Accepted : 2013.08.31
  • Published : 2013.11.25

Abstract

Numerous studies have been conducted to understand the shear behavior of reinforced concrete (RC) beams since it is a complex phenomenon. The diagonal cracking strength of a RC beam is critical since it is essential for determining the minimum amount of stirrups and the contribution of concrete to the shear strength of the beam. Most of the existing equations predicting the diagonal cracking strength of RC beams are based on experimental data. A powerful computational tool for analyzing experimental data is an artificial neural network (ANN). Its advantage over conventional methods for empirical modeling is that it does not require any functional form and it can be easily updated whenever additional data is available. An ANN model was developed for predicting the diagonal cracking strength of RC slender beams without stirrups. It is shown that the performance of the ANN model over the experimental data considered in this study is better than the performances of six design code equations and twelve equations proposed by various researchers. In addition, a parametric study was conducted to study the effects of various parameters on the diagonal cracking strength of RC slender beams without stirrups upon verifying the model.

Keywords

References

  1. Abdalla, J.A., Elsanosi, A. and Abdelwahab, A. (2007), "Modeling and simulation of shear resistance of R/C beams using artificial neural network", J. Frankl. Inst., 344(5), 741-756. https://doi.org/10.1016/S0141-0296(03)00060-9
  2. Ahmad, S.H., Khaloo, A.R. and Poveda, A. (1986), "Shear capacity of reinforced high-strength concrete beams", ACI J. Proc., 83(2), 297-305.
  3. Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Sci. Iran., 19(2), 242-248. https://doi.org/10.1016/j.scient.2012.02.009
  4. American Concrete Institute Committee 318 (ACI 318) (2011), Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary, Farmington Hills, MI.
  5. Arslan, G. (2012), "Diagonal tension failure of RC beams without stirrups", J. Civ. Eng. Manag., 18(2), 217-226. https://doi.org/10.3846/13923730.2012.671264
  6. Ashour, A.F., Alvarez, L.F. and Toropov, V.V. (2003), "Empirical modelling of shear strength of RC deep beams by genetic programming", Comput.Struct., 81(5), 331-338. https://doi.org/10.1016/S0045-7949(02)00437-6
  7. Bazant, Z.P. and Kim, J.K.(1984), "Size effect in shear failure of longitudinally reinforced beams", ACI J. Proc., 81(5), 456-468.
  8. Bazant, Z.P. and Kazemi, M.T. (1991), "Size effect on diagonal shear failure of beams without stirrups", ACI Struct. J., 88(3), 268-276.
  9. Bazant, Z.P. and Sun, H.H. (1987), "Size effect in diagonal shear failure: influence of aggregate size and stirrups", ACI Mater. J., 84(4), 259-272.
  10. Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beam", ACI J. Proc., 60(1), 51-74.
  11. Cevik, A. and Ozturk, S. (2009), "Neuro-fuzzy model for shear strength of reinforced concrete beams without web reinforcement", Civ. Eng. Environ. Syst., 26(3), 263-277. https://doi.org/10.1080/10286600802109927
  12. Choi, K.K., Sherif, A.G., Taha, M.M.R. and Chung, L. (2009), "Shear strength of slender reinforced concrete beams without webreinforcement: a model using fuzzy set theory", Eng. Struct., 31(3), 768-777. https://doi.org/10.1016/j.engstruct.2008.11.013
  13. Cladera, A. and Mari, A.R. (2004a), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups", Eng. Struct., 26(7), 917-926. https://doi.org/10.1016/j.engstruct.2004.02.010
  14. Cladera, A. and Mari, A.R. (2004b), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups", Eng. Struct., 26(7), 927-936. https://doi.org/10.1016/j.engstruct.2004.02.011
  15. Cladera, A. and Mari, A.R. (2005), "Experimental study on high-strength concrete beams failing in shear", Eng. Struct., 27(10), 1519-1527. https://doi.org/10.1016/j.engstruct.2005.04.010
  16. Collins, M.P. and Kuchma, D.A. (1999), "How safe are our large, lightly reinforced concrete beams, slabs, and footings?", ACI Struct. J., 96(4), 482-490.
  17. Comite Euro-International du Beton (CEB) (2010), CEB-FIP Model Code 2010, Lausanne, Switzerland.
  18. Comite Euro-International du Beton (CEB) (1993), CEB-FIP Model Code 1990, Lausanne, Switzerland.
  19. Cossio, R.D. and Siess, C.P. (1960), "Behavior and strength in shear of beams and frames without web reinforcement", ACI J. Proc., 56(2), 695-736.
  20. Elzanaty, A.H., Nilson, A.H. and Slate, F.O. (1986), "Shear capacity of reinforced concrete beams using high strength concrete", ACI J. Proc., 83(2), 290-296.
  21. El Chabib, H., Nehdi, M. and Said, A. (2005), "Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence", Comput. Concrete, 2(1), 79-96. https://doi.org/10.12989/cac.2005.2.1.079
  22. El-Chabib, H., Nehdi, M. and Said, A. (2006), "Predicting the effect of stirrups on shear strength of reinforced normal-strength concrete (NSC) and high--strength concrete (HSC) slender beams using artificial intelligence", Can. J. Civ. Eng., 33(8), 933-944. https://doi.org/10.1139/l06-033
  23. European Committee for Standardization (2004), Eurocode 2: Design of Concrete Structures - Part 1-1: General rules and rules for buildings, Brussels.
  24. Foresee, F.D. and Hagan, M.T. (1997), "Gauss-Newton approximation to Bayesian regularization", Proceedings of the International Joint Conference on Neural Networks, 1930-1935.
  25. Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater.Struct., 46(12), 2109-2119. https://doi.org/10.1617/s11527-013-0039-z
  26. Garip, E. (2011), "Shear strength of reinforced concrete beams without stirrups", MS.c. Thesis, Yildiz Technical University, Istanbul, Turkey.
  27. Goh, A.T.C. (1995), "Prediction of ultimate shear strength of deep beams using neural networks", ACI Struct. J., 92(1), 28-32.
  28. Hagan, M.T., Demuth, H.B. and Beale, M.H. (1996), Neural Network Design, PWS Publishing Company, Boston, MA.
  29. Hamrat, M., Boulekbache, B., Chemrouk, M. and Amziane, S. (2010), "Shear behaviour of RC beams without stirrups made of normal strength and high strength concretes", Adv. Struct. Eng., 13(1), 29-41. https://doi.org/10.1260/1369-4332.13.1.29
  30. Haykin, S.S. (1998), Neural Networks: A Comprehensive Foundation, (2nd Ed.), Prentice Hall, Englewood Cliffs, NJ.
  31. Joint ASCE-ACI Committee 445 (1998), "Recent approaches to shear design of structural concrete: state-of-the-art-report", ASCE J. Struct. Eng., 124(12), 1375-1417. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
  32. Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30(6), 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008
  33. Kani, G.N.J. (1964), "The riddle of shear failure and its solution", ACI J. Proc., 61(4), 441-468.
  34. Khuntia, M. and Stojadinovic, B. (2001), "Shear strength of reinforced concrete beams without transverse reinforcement", ACI Struct. J., 98(5), 648-656.
  35. Kim, D., Kim, W. and White, R.N. (1999), "Arch action in reinforced concrete beams - A rational prediction of shear strength", ACI Struct. J., 96(4), 586-593.
  36. Kim, J.K. and Park, Y.D (1996), "Prediction of shear strength of reinforced concrete beams without web reinforcement", ACI Mater. J., 93(3), 213-222.
  37. Krefeld, W.J. and Thurston, C.W. (1966), "Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams", ACI J. Proc., 63(4), 451-476.
  38. Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011
  39. Mathey, R.G. and Watstein, D. (1963), "Shear strength of beams without web reinforcement", ACI J. Proc., 60(2), 183-208.
  40. Mattock, A.H. (1969), "Diagonal tension cracking in concrete beams with axial forces", ASCE J. Struct. Div., 95(9), 1887-1900.
  41. Moody, K.G., Viest, I.M., Elstner, R.C. and Hognestad, E. (1954), "Shear strength of reinforced concrete beams part 1 - tests of simple beams", ACI J. Proc., 51(12), 317-332.
  42. Mphonde, A.G. and Frantz, G.C. (1984), "Shear tests of high and low-strength concrete beams without stirrups", ACI J. Proc., 81(4), 350-357.
  43. Okamura, H. and Higai, T. (1980), "Proposed design equation for shear strength of RC beams without web reinforcement", Proceeding of Japan. Society of Civil Engineering, 300, 131-141.
  44. Oreta, A.W.C. (2004), "Simulating size effect on shear strength of RC beams without stirrups using neural networks", Eng. Struct., 26(5), 681-691. https://doi.org/10.1016/j.engstruct.2004.01.009
  45. Pendyala, R.S. and Mendis, P. (2000), "Experimental study on shear strength of high-strength concrete beams", ACI Struct. J., 97(4), 564-571.
  46. Perera, R., Barchin, M., Arteaga, A. and De Diego, A. (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B-Eng., 41(4), 287-298. https://doi.org/10.1016/j.compositesb.2010.03.003
  47. Perez, J.L., Cladera, A., Rabunal, J.R. and Martinez-Abella, F. (2010), "Optimal adjustment of EC-2 shear formulation for concrete elements without web reinforcement using genetic programming", Eng. Struct., 32(11), 3452-3466. https://doi.org/10.1016/j.engstruct.2010.07.006
  48. Perez, J.L., Cladera, A., Rabunal, J.R. and Martinez-Abella, F. (2012), "Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beams", Adv. Eng. Softw., 50, 82-96. https://doi.org/10.1016/j.advengsoft.2012.02.008
  49. Rebeiz, K.S. (1999), "Shear strength prediction for concrete members", ASCE J. Struct. Eng., 125(3), 301-308. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(301)
  50. Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate shear strength of reinforced concrete deep beams using neural networks", ASCE J. Struct. Eng., 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)
  51. Shah, A. and Ahmad, S. (2007), "An experimental investigation into shear capacity of high strength concrete beams", Asian J. Civ. Eng., 8(5), 549-562.
  52. Shin, S.W., Lee, K.S, Moon, J.I. and Ghosh, S.K. (1999), "Shear strength of reinforced high-strength concrete beams with shear span-to-depth ratios between 1.5 and 2.5", ACI Struct. J., 96(4), 549-556.
  53. Slowik, M. and Nowicki, T. (2012), "The analysis of diagonal crack propagation in concrete beams", Comp. Mater. Sci., 52, 261-267. https://doi.org/10.1016/j.commatsci.2011.02.012
  54. Slowik, M. and Smarzewski, P. (2012), "Study of the scale effect on diagonal crack propagation in concrete beams", Comp. Mater. Sci., 64, 216-220. https://doi.org/10.1016/j.commatsci.2012.05.068
  55. Sneed, L.H. and Ramirez, J.A. (2010), "Influence of effective depth on shear strength of concrete beams -experimental study", ACI Struct. J., 107(5), 554-562.
  56. Tanarslan, H.M., Secer, M. and Kumanlioglu, A. (2012), "An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks", Constr. Build.Mater., 30, 556-568. https://doi.org/10.1016/j.conbuildmat.2011.12.008
  57. Taylor, R. (1960), "Some shear tests on reinforced concrete beams without shear reinforcement", Mag. Concrete Res., 12(36), 145-154. https://doi.org/10.1680/macr.1960.12.36.145
  58. Taylor, R. and Brewer, R.S. (1963), "The effect of the type of aggregate on the diagonal cracking of reinforced concrete beams", Mag. Concrete Res., 15(44), 87-92. https://doi.org/10.1680/macr.1963.15.44.87
  59. Turkish Standards Institute (2000), TS 500 Requirements for Design and Construction of Reinforced Concrete Structures, Ankara, Turkey.
  60. Van den Berg, F.J. (1962), "Shear strength of reinforced concrete beams without web reinforcement part 2 - factors affecting load at diagonal cracking", ACI J. Proc., 59(11), 1587-1600.
  61. Xie, Y., Ahmad, S.H., Yu, T., Hino, S. and Chung, W. (1994), "Shear ductility of reinforced concrete beams of normal and high-strength concrete", ACI Struct. J., 91(2), 140-149.
  62. Zararis, P.D. and Papadakis, G.C. (2001), "Diagonal shear failure and size effect in RC beams without web reinforcement", ASCE J. Struct. Eng., 127(7), 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
  63. Zsutty, T. (1971), "Shear strength prediction for separate catagories of simple beam tests", ACI J. Proc., 68(2), 138-143.

Cited by

  1. Nonlinear Finite Element Modeling of Shear-Critical Reinforced Concrete Beams Using a Set of Interactive Constitutive Laws vol.14, pp.8, 2016, https://doi.org/10.1007/s40999-016-0024-3
  2. Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming vol.14, pp.4, 2014, https://doi.org/10.12989/cac.2014.14.4.479
  3. Predicting shear strength of SFRC slender beams without stirrups using an ANN model vol.61, pp.5, 2017, https://doi.org/10.12989/sem.2017.61.5.605
  4. Shear Resistance Prediction of Post-fire Reinforced Concrete Beams Using Artificial Neural Network vol.13, pp.1, 2013, https://doi.org/10.1186/s40069-019-0358-8
  5. Artificial neural network calculations for a receding contact problem vol.25, pp.6, 2013, https://doi.org/10.12989/cac.2020.25.6.551
  6. Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.309