References
- Abdalla, J.A., Elsanosi, A. and Abdelwahab, A. (2007), "Modeling and simulation of shear resistance of R/C beams using artificial neural network", J. Frankl. Inst., 344(5), 741-756. https://doi.org/10.1016/S0141-0296(03)00060-9
- Ahmad, S.H., Khaloo, A.R. and Poveda, A. (1986), "Shear capacity of reinforced high-strength concrete beams", ACI J. Proc., 83(2), 297-305.
- Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Sci. Iran., 19(2), 242-248. https://doi.org/10.1016/j.scient.2012.02.009
- American Concrete Institute Committee 318 (ACI 318) (2011), Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary, Farmington Hills, MI.
- Arslan, G. (2012), "Diagonal tension failure of RC beams without stirrups", J. Civ. Eng. Manag., 18(2), 217-226. https://doi.org/10.3846/13923730.2012.671264
- Ashour, A.F., Alvarez, L.F. and Toropov, V.V. (2003), "Empirical modelling of shear strength of RC deep beams by genetic programming", Comput.Struct., 81(5), 331-338. https://doi.org/10.1016/S0045-7949(02)00437-6
- Bazant, Z.P. and Kim, J.K.(1984), "Size effect in shear failure of longitudinally reinforced beams", ACI J. Proc., 81(5), 456-468.
- Bazant, Z.P. and Kazemi, M.T. (1991), "Size effect on diagonal shear failure of beams without stirrups", ACI Struct. J., 88(3), 268-276.
- Bazant, Z.P. and Sun, H.H. (1987), "Size effect in diagonal shear failure: influence of aggregate size and stirrups", ACI Mater. J., 84(4), 259-272.
- Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beam", ACI J. Proc., 60(1), 51-74.
- Cevik, A. and Ozturk, S. (2009), "Neuro-fuzzy model for shear strength of reinforced concrete beams without web reinforcement", Civ. Eng. Environ. Syst., 26(3), 263-277. https://doi.org/10.1080/10286600802109927
- Choi, K.K., Sherif, A.G., Taha, M.M.R. and Chung, L. (2009), "Shear strength of slender reinforced concrete beams without webreinforcement: a model using fuzzy set theory", Eng. Struct., 31(3), 768-777. https://doi.org/10.1016/j.engstruct.2008.11.013
- Cladera, A. and Mari, A.R. (2004a), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups", Eng. Struct., 26(7), 917-926. https://doi.org/10.1016/j.engstruct.2004.02.010
- Cladera, A. and Mari, A.R. (2004b), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups", Eng. Struct., 26(7), 927-936. https://doi.org/10.1016/j.engstruct.2004.02.011
- Cladera, A. and Mari, A.R. (2005), "Experimental study on high-strength concrete beams failing in shear", Eng. Struct., 27(10), 1519-1527. https://doi.org/10.1016/j.engstruct.2005.04.010
- Collins, M.P. and Kuchma, D.A. (1999), "How safe are our large, lightly reinforced concrete beams, slabs, and footings?", ACI Struct. J., 96(4), 482-490.
- Comite Euro-International du Beton (CEB) (2010), CEB-FIP Model Code 2010, Lausanne, Switzerland.
- Comite Euro-International du Beton (CEB) (1993), CEB-FIP Model Code 1990, Lausanne, Switzerland.
- Cossio, R.D. and Siess, C.P. (1960), "Behavior and strength in shear of beams and frames without web reinforcement", ACI J. Proc., 56(2), 695-736.
- Elzanaty, A.H., Nilson, A.H. and Slate, F.O. (1986), "Shear capacity of reinforced concrete beams using high strength concrete", ACI J. Proc., 83(2), 290-296.
- El Chabib, H., Nehdi, M. and Said, A. (2005), "Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence", Comput. Concrete, 2(1), 79-96. https://doi.org/10.12989/cac.2005.2.1.079
- El-Chabib, H., Nehdi, M. and Said, A. (2006), "Predicting the effect of stirrups on shear strength of reinforced normal-strength concrete (NSC) and high--strength concrete (HSC) slender beams using artificial intelligence", Can. J. Civ. Eng., 33(8), 933-944. https://doi.org/10.1139/l06-033
- European Committee for Standardization (2004), Eurocode 2: Design of Concrete Structures - Part 1-1: General rules and rules for buildings, Brussels.
- Foresee, F.D. and Hagan, M.T. (1997), "Gauss-Newton approximation to Bayesian regularization", Proceedings of the International Joint Conference on Neural Networks, 1930-1935.
- Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater.Struct., 46(12), 2109-2119. https://doi.org/10.1617/s11527-013-0039-z
- Garip, E. (2011), "Shear strength of reinforced concrete beams without stirrups", MS.c. Thesis, Yildiz Technical University, Istanbul, Turkey.
- Goh, A.T.C. (1995), "Prediction of ultimate shear strength of deep beams using neural networks", ACI Struct. J., 92(1), 28-32.
- Hagan, M.T., Demuth, H.B. and Beale, M.H. (1996), Neural Network Design, PWS Publishing Company, Boston, MA.
- Hamrat, M., Boulekbache, B., Chemrouk, M. and Amziane, S. (2010), "Shear behaviour of RC beams without stirrups made of normal strength and high strength concretes", Adv. Struct. Eng., 13(1), 29-41. https://doi.org/10.1260/1369-4332.13.1.29
- Haykin, S.S. (1998), Neural Networks: A Comprehensive Foundation, (2nd Ed.), Prentice Hall, Englewood Cliffs, NJ.
- Joint ASCE-ACI Committee 445 (1998), "Recent approaches to shear design of structural concrete: state-of-the-art-report", ASCE J. Struct. Eng., 124(12), 1375-1417. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
- Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30(6), 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008
- Kani, G.N.J. (1964), "The riddle of shear failure and its solution", ACI J. Proc., 61(4), 441-468.
- Khuntia, M. and Stojadinovic, B. (2001), "Shear strength of reinforced concrete beams without transverse reinforcement", ACI Struct. J., 98(5), 648-656.
- Kim, D., Kim, W. and White, R.N. (1999), "Arch action in reinforced concrete beams - A rational prediction of shear strength", ACI Struct. J., 96(4), 586-593.
- Kim, J.K. and Park, Y.D (1996), "Prediction of shear strength of reinforced concrete beams without web reinforcement", ACI Mater. J., 93(3), 213-222.
- Krefeld, W.J. and Thurston, C.W. (1966), "Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams", ACI J. Proc., 63(4), 451-476.
- Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011
- Mathey, R.G. and Watstein, D. (1963), "Shear strength of beams without web reinforcement", ACI J. Proc., 60(2), 183-208.
- Mattock, A.H. (1969), "Diagonal tension cracking in concrete beams with axial forces", ASCE J. Struct. Div., 95(9), 1887-1900.
- Moody, K.G., Viest, I.M., Elstner, R.C. and Hognestad, E. (1954), "Shear strength of reinforced concrete beams part 1 - tests of simple beams", ACI J. Proc., 51(12), 317-332.
- Mphonde, A.G. and Frantz, G.C. (1984), "Shear tests of high and low-strength concrete beams without stirrups", ACI J. Proc., 81(4), 350-357.
- Okamura, H. and Higai, T. (1980), "Proposed design equation for shear strength of RC beams without web reinforcement", Proceeding of Japan. Society of Civil Engineering, 300, 131-141.
- Oreta, A.W.C. (2004), "Simulating size effect on shear strength of RC beams without stirrups using neural networks", Eng. Struct., 26(5), 681-691. https://doi.org/10.1016/j.engstruct.2004.01.009
- Pendyala, R.S. and Mendis, P. (2000), "Experimental study on shear strength of high-strength concrete beams", ACI Struct. J., 97(4), 564-571.
- Perera, R., Barchin, M., Arteaga, A. and De Diego, A. (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B-Eng., 41(4), 287-298. https://doi.org/10.1016/j.compositesb.2010.03.003
- Perez, J.L., Cladera, A., Rabunal, J.R. and Martinez-Abella, F. (2010), "Optimal adjustment of EC-2 shear formulation for concrete elements without web reinforcement using genetic programming", Eng. Struct., 32(11), 3452-3466. https://doi.org/10.1016/j.engstruct.2010.07.006
- Perez, J.L., Cladera, A., Rabunal, J.R. and Martinez-Abella, F. (2012), "Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beams", Adv. Eng. Softw., 50, 82-96. https://doi.org/10.1016/j.advengsoft.2012.02.008
- Rebeiz, K.S. (1999), "Shear strength prediction for concrete members", ASCE J. Struct. Eng., 125(3), 301-308. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(301)
- Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate shear strength of reinforced concrete deep beams using neural networks", ASCE J. Struct. Eng., 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)
- Shah, A. and Ahmad, S. (2007), "An experimental investigation into shear capacity of high strength concrete beams", Asian J. Civ. Eng., 8(5), 549-562.
- Shin, S.W., Lee, K.S, Moon, J.I. and Ghosh, S.K. (1999), "Shear strength of reinforced high-strength concrete beams with shear span-to-depth ratios between 1.5 and 2.5", ACI Struct. J., 96(4), 549-556.
- Slowik, M. and Nowicki, T. (2012), "The analysis of diagonal crack propagation in concrete beams", Comp. Mater. Sci., 52, 261-267. https://doi.org/10.1016/j.commatsci.2011.02.012
- Slowik, M. and Smarzewski, P. (2012), "Study of the scale effect on diagonal crack propagation in concrete beams", Comp. Mater. Sci., 64, 216-220. https://doi.org/10.1016/j.commatsci.2012.05.068
- Sneed, L.H. and Ramirez, J.A. (2010), "Influence of effective depth on shear strength of concrete beams -experimental study", ACI Struct. J., 107(5), 554-562.
- Tanarslan, H.M., Secer, M. and Kumanlioglu, A. (2012), "An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks", Constr. Build.Mater., 30, 556-568. https://doi.org/10.1016/j.conbuildmat.2011.12.008
- Taylor, R. (1960), "Some shear tests on reinforced concrete beams without shear reinforcement", Mag. Concrete Res., 12(36), 145-154. https://doi.org/10.1680/macr.1960.12.36.145
- Taylor, R. and Brewer, R.S. (1963), "The effect of the type of aggregate on the diagonal cracking of reinforced concrete beams", Mag. Concrete Res., 15(44), 87-92. https://doi.org/10.1680/macr.1963.15.44.87
- Turkish Standards Institute (2000), TS 500 Requirements for Design and Construction of Reinforced Concrete Structures, Ankara, Turkey.
- Van den Berg, F.J. (1962), "Shear strength of reinforced concrete beams without web reinforcement part 2 - factors affecting load at diagonal cracking", ACI J. Proc., 59(11), 1587-1600.
- Xie, Y., Ahmad, S.H., Yu, T., Hino, S. and Chung, W. (1994), "Shear ductility of reinforced concrete beams of normal and high-strength concrete", ACI Struct. J., 91(2), 140-149.
- Zararis, P.D. and Papadakis, G.C. (2001), "Diagonal shear failure and size effect in RC beams without web reinforcement", ASCE J. Struct. Eng., 127(7), 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
- Zsutty, T. (1971), "Shear strength prediction for separate catagories of simple beam tests", ACI J. Proc., 68(2), 138-143.
Cited by
- Nonlinear Finite Element Modeling of Shear-Critical Reinforced Concrete Beams Using a Set of Interactive Constitutive Laws vol.14, pp.8, 2016, https://doi.org/10.1007/s40999-016-0024-3
- Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming vol.14, pp.4, 2014, https://doi.org/10.12989/cac.2014.14.4.479
- Predicting shear strength of SFRC slender beams without stirrups using an ANN model vol.61, pp.5, 2017, https://doi.org/10.12989/sem.2017.61.5.605
- Shear Resistance Prediction of Post-fire Reinforced Concrete Beams Using Artificial Neural Network vol.13, pp.1, 2013, https://doi.org/10.1186/s40069-019-0358-8
- Artificial neural network calculations for a receding contact problem vol.25, pp.6, 2013, https://doi.org/10.12989/cac.2020.25.6.551
- Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.309