• Title/Summary/Keyword: Technical Problem

Search Result 1,458, Processing Time 0.033 seconds

Quadratic Complementary Programming

  • Gupta, A.K.;Sharma, J.K.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 1982
  • The present paper provides a method for solving a complementary programming problem with quadratic objective function subject to linear constraints. The procedure developed is based on the simplex method for quadratic programming problem. An example is added to illustrate the procedure.

  • PDF

A Basic Data Research on Advantage Studying of Junior College for Graduation Students of Technical High School in Department of Electricity (공업고등학교 전기관련과의 수학교육 보완에 관한 연구)

  • Lee, Sang-Seock;Shin, Yong-Cheol;Kim, Min-Huei;Park, Chan-Gyu;Lee, Jae-Yong;Cho, Sea-Ho;Song, Tae-Beom;Bae, Byung-Ho;Lee, Jong-Woo;Jeong, Ahn-Sik;Choi, Sung-Ha;Shin, Dong-Soo;Yoon, Sang-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.3-9
    • /
    • 2004
  • This research is that concern in mathematics education of Technical high school Department of Electricity in the 7th educational curriculum. Indicated problem of mathematics education of Technical high school Department of Electricity at 7th educational curriculum as that compare mathematics subject contents with difference of Technical high school mathematics education in the 6th and the 7th educational curriculum. And examine major subject contents, analyzed contents of mathematics that must supplement and mathematics which use in major subject. Established contents of electricity mathematics education that need to major learning to satisfy target of technical high school technical education that is presented in the 7th training courses with this analysis

  • PDF

Sensor and actuator design for displacement control of continuous systems

  • Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.147-172
    • /
    • 2007
  • The present paper is concerned with the design of distributed sensors and actuators. Strain type sensors and actuators are considered with their intensity continuously distributed throughout a continuous structure. The sensors measure a weighted average of the strain tensor. As a starting point for their design we introduce the concept of collocated sensors and actuators as well as the so-called natural output. Then we utilize the principle of virtual work for an auxiliary quasi-static problem to assign a mechanical interpretation to the natural output of the sensors to be designed. Therefore, we take the virtual displacements in the principle of virtual work as that part of the displacement in the original problem, which characterizes the deviation from a desired one. We introduce different kinds of distributed sensors, each of them with a mechanical interpretation other than a weighted average of the strain tensor. Additionally, we assign a mechanical interpretation to the collocated actuators as well; for that purpose we use an extended body force analogy. The sensors and actuators are applied to solve the displacement tracking problem for continuous structures; i.e., the problem of enforcing a desired displacement field. We discuss feed forward and feed back control. In the case of feed back control we show that a PD controller can stabilize the continuous system. Finally, a numerical example is presented. A desired deflection of a clamped-clamped beam is tracked by means of feed forward control, feed back control and a combination of the two.

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

Part Configuration Problem Solving for Electronic Commerce (인터넷 전자상거래 환경에서 부품구성기법 활용 연구)

  • 권순범
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.407-410
    • /
    • 1998
  • Configuration is a set of building block processes, a series of selection and combining parts or components which composes a whole thing. A whole thing could be such a configurable object as manufacturing product, network system, financial portfolio, system development plan, project team, etc. Configuration problem could happen during any phase of product life cycle: design, production, sales, installation, and maintenance. Configuration has long been one of cost and time consuming work, because only high salaried technical experts on product and components can do configuration. Rework for error adjustments of configurations at later process causes far much cost and time, so accurate configuration is required. Under the on-line electronic commerce environment, configuration problem solving becomes more important, because component-based sales should be done automatically on the merchant web site. Automated product search, order placement, order fulfillment and payment make that manual configuration is no longer feasible. Automated configuration means that all the constraints among components should be checked and confirmed by configuration engine automatically. In addition, technical constraints and customer preferences like price range and a specific function required should be considered. This paper gives an brief overview of configuration problems: characteristics, representation paradigms, and solving algorithms and introduce CRSP(Constraint and Rule Satisfaction Problem) method. CRSP method adopts both constraint and rule for configuration domain knowledge representation. A survey and analysis on web sites adopting configuration functions are provided. Future directions of configuration for EC is discussed in the three aspects: methodology itself, companies adopting configuration function, and electronic commerce industry.

  • PDF

Evaluation of the different genetic algorithm parameters and operators for the finite element model updating problem

  • Erdogan, Yildirim Serhat;Bakir, Pelin Gundes
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.541-569
    • /
    • 2013
  • There is a wide variety of existing Genetic Algorithms (GA) operators and parameters in the literature. However, there is no unique technique that shows the best performance for different classes of optimization problems. Hence, the evaluation of these operators and parameters, which influence the effectiveness of the search process, must be carried out on a problem basis. This paper presents a comparison for the influence of GA operators and parameters on the performance of the damage identification problem using the finite element model updating method (FEMU). The damage is defined as reduction in bending rigidity of the finite elements of a reinforced concrete beam. A certain damage scenario is adopted and identified using different GA operators by minimizing the differences between experimental and analytical modal parameters. In this study, different selection, crossover and mutation operators are compared with each other based on the reliability, accuracy and efficiency criteria. The exploration and exploitation capabilities of different operators are evaluated. Also a comparison is carried out for the parallel and sequential GAs with different population sizes and the effect of the multiple use of some crossover operators is investigated. The results show that the roulettewheel selection technique together with real valued encoding gives the best results. It is also apparent that the Non-uniform Mutation as well as Parent Centric Normal Crossover can be confidently used in the damage identification problem. Nevertheless the parallel GAs increases both computation speed and the efficiency of the method.

Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods

  • Yaylaci, Murat;Sabano, Bahar Sengul;Ozdemir, Mehmet Emin;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.401-416
    • /
    • 2022
  • The aim of this study is to examine the frictionless double receding contact problem for two functionally graded (FG) layers pressed with a uniformly distributed load and resting on a homogeneous half plane (HP) using analytical and numerical methods. The FG layers are made of a non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layers and FG layer-HP interface is frictionless. The body force of the FG layers and homogeneous HP are ignored in the study. Firstly, an analytical solution for the contact problem has been realized using the theory of elasticity and the Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using the ANSYS package program based on FEM. Numerical results for contact lengths and contact pressures between FG layers and FG layer-HP were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio, and the heights of the FG layers for both methods. The results obtained using FEM were compared with the results found using the analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Value Engineering Idea Generation for Temporary Construction Designs through Conflict Resolution (가시설 공사 설계VE 대안검토시 모순충돌 해결을 통한 아이디어 창출)

  • Hong, Soonheon;Baeg, Hangee;Moon, Sungwoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.6
    • /
    • pp.30-37
    • /
    • 2013
  • Idea creation is the most important step in the overall value engineering (VE) process. Usually the activity is done mostly relying on the experience and knowledge of the experts in the VE team. A more organized approach is needed to find the chance of design improvement during a VE workshop. This study presents an organized approach to increasing the chance of idea creation during the VE workshop. The concept of conflict resolution in TRIZ (Theory of Inventive Problem Solving) is applied to understand the problem area during design improvement. The technical parameters were identified in the problem area to explain the conflicts in design improvement. These technical parameters were used to assist problem solving and improve design functions. A case study was done on a temporary construction operation, and demonstrated that the organized idea creation can help improve the design value of the temporary construction operation.