금융시장에서 주식 가격 자체 또는 가격의 방향성에 대한 예측은 오래 전부터 관심의 대상이 되어 왔기에 여러 방면에서 다양한 연구가 이어져 왔다. 특히 1960년대에 들어서며 많은 연구가 진행되었고 예측가능성에 대해 찬반의 의견들이 있었는데, 1970년대에 나타난 효율적 시장 가설이 지지를 받으면서 주식 가격의 예측은 불가능하다는 의견이 주를 이루었다. 그러나 최근 기계학습 등 예측기술의 발달로 인해 주식 시장에서 미래를 예측해 보려는 새로운 시도가 이어져, 주식시장의 효율성을 부정하고 높은 예측력을 주장하는 연구들이 등장하고 있다. 이 논문에서는 과거 연구들을 평가방법 별로 정리하고, 새로운 주장의 신빙성을 확인하기 위해 이차판별분석, support vector machine, random forest, extreme gradient boost, 심층신경망 등 다양한 기계학습 모형을 적용하여 한국유가증권시장에 상장된 종목 중 삼성전자, LG화학, Naver 주식 가격의 방향성을 예측해보았다. 이때, 널리 사용되는 기술적 지표 변수들과 더불어 price earning ratio, price book-value ratio 등 회계지표를 활용한 변수와, 은닉마르코프모형의 출력값 변수를 사용하였다. 분석결과, 이번 연구의 조건 하에서는 통계적으로 유의미한 예측력을 제시하는 모형이 존재하지 않았고, 현 시점에서 단기 주가 방향성의 예측은 어렵다고 판단되었다. 비교적 단순한 이차판별분석 모형과 회계지표를 활용한 변수를 추가한 모형이 상대적으로 높은 예측력을 보였다는 점에서, 복잡한 모형을 시도하기 보다는 주식 가격에 대한 투자자들의 의견 및 심리가 반영될 수 있는 다양한 변수를 개발하여 활용한다면 향후 유의미한 예측이 가능할 수도 있을 것이다.
4차산업혁명시대에 정보통신기술의 비약적인 발전, 고객구매 성향의 다양함, 복잡함은 산업 전체적으로 데이터의 양적 중가를 가져와 '빅데이터' 시대를 맞이하게 되었다. 빅데이터 시대는 데이터를 분석, 활용하여 기업의 전략적 의사결정에 활용하는 것이 기업의 핵심 역량으로 자리 잡게 되었다. 하지만 현재 빅데이터 연구들은 기술적 이슈와 미래 잠재 가치 중심이었다. 반면 기업이 보유한 내.외부 고객 빅데이터의 품질 및 활용 수준관리에 대한 연구와 논의는 부족하였다. 본 연구에서는 기업의 내.외부 빅데이터 품질관리 정보시스템 측면와 품질경영 측면으로 인식하여 영향요인을 도출하였다. 또한 빅데이터 품질관리, 빅데이터 활용 및 수준관리가 기업의 업무 효율화와 기업 경영성과에 유의한 영향을 미치는지 204명의 임직원 설문을 통해 조사하였고, 가설을 설정하여 검증하였다. 연구결과 경영층의 지원, 개인 혁신성, 경영환경변화, 빅데이터 품질활용 지표관리, 빅데이터 거버넌스 체계 마련이 기업 경영성과에 유의한 영향을 미쳤다.
이 연구는 기록관리 영역에서 공공 전자기록의 증거능력을 근거할 신뢰가치 모델(안)을 개발할 것을 목표로 하였다. 이 연구가 목표로 하는 '공공 전자기록의 신뢰가치 모델(안)'은 전자기록의 생산과 함께 확보되어야 하는 속성에서부터, 연속적인 기록관리과정에서 확인될 무결성, 기록 생산 업무 활동과의 관계에 관한 증거, 생산 시 의도된 대로 얼마나 전자기록을 재현하고 이해할 수 있도록 하는가의 정도 등을 확인할 수 있도록 설계된 모델이다. 이를 위한 모델 개발과정에는, QADEP 신뢰가치 측정 모델을 기초로 활용하였다. QADEP 모델 분석 결과, 진본성과 신뢰성 및 이용가능성의 외적 측정영역 유형의 범주에서 공공전자기록의 신뢰가치를 측정할 수 있는 영역과 지표 및 측정기준을 설계할 것을 결정하였다. 이 방향에 맞추어, ISO 16175-1:2020의 분석을 통해 기초 모델의 측정영역과 지표를 확장 및 구체화하였으며, 공공표준을 샘플로 분석하여 도구화할 수 있도록 측정 체계도 제안하였다. 이 연구는 선행 연구성과에 토대를 두어, 전자기록의 신뢰가치 확립을 위해 갖춰야 할 증거능력 확보에 적용할 수 있는 도구 개발의 가능성을 확인하였다는 의의를 지닌다.
본 연구 과정에서는 국가뿌리산업진흥센터를 통한 뿌리 확인기업, 뿌리 전문기업을 기반으로 신용평가 공시자료가 있는 2,700여개의 기업체의 3년간 재무 상황 (2017년부터 2019년까지)를 확인하였다. 국내에서는 처음으로 이와 같은 뿌리산업의 재무적인 현황분석을 통하여 성장성, 수익성, 안정성을 살펴보고자 하였다. 심층 분석을 통하여 3년간의 뿌리기업 종사자, 총 매출액 변동 추이와 함께, 영업이익(률)과 순이익(률), 자산규모, 부채비율을 파악하였으며, 1인당 재무구조도 살펴보았다. 또한 뿌리기업을 종사자 규모별로 6단계로 구분하여 각 규모별 1인당 재무현황을 비교하였다. 각각의 단계는 10인 이하, 11~20인, 21~50인, 51~200인, 201~300인, 300인 이상이었으며, 1인 기업은 연구 편의상 제외하였다. 전반적으로 뿌리기업의 재무상황은 매우 안 좋은 침체 상황으로 판단되며, 조사기간 3년 동안 해를 거듭할수록 재무지표는 악화되는 것으로 나타났다. 특히, 종사자 수가 적은 기업체일수록 재무 변동 폭이 불안정적으로 크고 심각할 수준으로 상황이 악화되는 것을 알 수 있다. 뿌리기업 중에서도 산업생태계의 가치사슬 기술적 시발점이 되는 주조산업도 같은 조사 방법을 통해 분석하였다, 주조산업도 업황이 매우 안 좋은 상황이며, 지속적인 종사인력 감소, 총 자산 및 매출액 감소가 심각한 수준이며, 영업이익(률)과 순이익(률)도 매우 저조한 상황임을 알 수 있었다. 어려운 상황이지만 이러한 상황을 극복할수 있는 지속 발전할 수 있는 적합하고 실현가능한 정책 방향이 필요한 이유이다.
본 논문은 현재 생산량을 유지하면서 투입량을 줄이기 위해 중국 동부지역의 대외무역 지속가능 발전의 효율성을 분석하는 것을 목적으로 한다. 2016년부터 2020년까지 중국 동부 11개 성 및 도시의 관련 입출력 지표를 채택하고 DEA모형을 이용하여 종합적 효율성, 순기술 효율성 및 규모 효율성을 측정하였다. MPI 산정에 Malmquist 지수를 사용한 결과 2016년부터 2020년까지 중국 동부 전 성의 MPI는 1.035로 1보다 높았고, 순기술 효율성은 0.911로 1보다 낮았다. 전체적으로 평균 기술진보지수는 4.045로 4.5% 증가했다. 대외무역의 지속 가능한 발전 효율성은 종합적 효율성, 순기술 효율성, 규모 효율성에 전반적으로 영향을 미치고 있음을 알 수 있다. 대외무역의 지속 가능한 발전 효율성은 규모에 의해 주로 제한을 받았다. 총요인 생산성 향상은 주로 기술적 진보로 부터 효과를 얻는 것으로 나타났다. 내부요소의 영향을 받는 성들에 대해서는 내부조률을 강화하여야 한다. 외부요인의 영향을 받은 성은 외부요인에 대비해야 한다.
최근 청년 실업, 특히 대학졸업자의 실업 문제가 사회적 이슈로 대두되고 있다. 대학졸업자의 실업은 범국가적인 문제이기도 하고 대학 차원의 문제이기도 해서 각 대학들은 졸업자들의 취업률을 높이기 위해 많은 노력을 하고 있다. 본 연구는 머신러닝 기법을 활용하여 D대학 졸업생의 취업여부를 예측하는 모델을 제시한다. 사용된 변수는 개인정보, 입학정보, 학사정보 등 최대 138개를 활용하여 분석하였으나 향후 교육과정에 반영하기 위해서는 입학 이후의 데이터만 유효하게 작용하므로 제안할 항목은 학과별/학생별 취업률 향상을 위한 추천 역량으로 한정하였다. 즉, 입학성적 등은 입학 후 개인의 노력에 의해 향상이 불가능한 지표이므로 취업률 예측도를 높이는 용도 등으로만 활용하였다. 본 연구는 대학의 이념, 목표 및 인재상 등이 반영된 D대학교의 핵심역량의 분석을 통한 취업예측 모델을 구현해 보고, 새로운 핵심역량 예측 모델의 도입이 실제 취업에 미치는 영향을 머신러닝을 활용하여 평가하고자 수행되었다. 향후 연구결과를 학과별 교육과정 수립 및 학생 진로 지도 등에 적용하여 취업률을 향상시킬 수 있는 근거를 마련하는데 그 의의가 있다.
OSC는 기획, 설계, 시공, 유지보수 등의 건설생산 전 과정에 걸친 공급망과 가치사슬의 한 유형으로 건설현장이 아닌 공장 등 제 3의 장소에서 제작한 후 현장으로 운반하여 설치 및 시공하므로써 최종 목적물을 생산하는 방식이다. 본 연구에서는 PC공법 및 RC공법을 적용한 공동주택 사례를 각각 1개에 대하여 공사비를 비교하였다. PC공법 적용(PC설계비 제외)의 경우 RC공법만 적용하는 경우에 비해 골조 단위물량(m3)당 골조공사비가 약 70% 내외로 증가(RC 공종 합계 기준 50%)함을 도출하였다. PC공법 적용 사례 전체 골조 공사비 중 PC비중이 90.2%로 'PC제작비'가 54.8%, 'PC조립' 28.5%, '운반'이 6.89%를 차지하여, PC제작 및 조립 부문에서 비용 절감 노력이 필요할 것으로 판단하였다. 또한, 비용과 편익을 함께 고려할 수 있는 의사결정 프레임워크 초안을 구축하였다. 편익의 경우 OSC 기술적 장점이 반영된 공사기간, 하자보수, 재해발생, 에너지효율, 소음/분진/폐기물, 온실가스 배출 지표를 제시하였다. OSC기반 PC 공동주택 도입 의사결정을 지원하기 위한 적용 효과 근거를 마련하는데 기여할 수 있을 것으로 판단된다.
본 연구에서는 도시 내 유휴공간을 대상으로 자연적이고 쾌적한 커뮤니티 공간 창출을 위해 LID(low impact development) 기법을 활용한 생태연못 건설을 추진하였다. 생태연못의 제원은 면적 $110m^2$, 평균 수심 $0.45{\pm}0.02m$이며, 하상재료는 자갈(gravel) (diameter ${\leq}60mm$), 모래(diameter ${\leq}2mm$), bentonite로 구성하였다. 조성된 생태연못의 연간 유량 특성을 파악하기 위해 강우 및 수심 모니터링을 실시한 결과, 1년간 조사된 총 강우량은 1,287 mm이며 7, 8월에 전체의 약 71.3% (918 mm)를 차지하는 계절적 불균형을 보였으나 보조수원의 공급으로 인해 연간 평균수심은 $0.45{\pm}0.02m$로 거의 일정하게 유지되었다. 기초수질의 연간 경향은 수온($5.2{\sim}28.8^{\circ}C$), DO (5.0~13.8 mg/L), EC ($113{\sim}265{\mu}S/cm$) 등의 사례를 볼 때 계절에 따른 증감을 나타내었다. 이화학적 수질 중 BOD, COD, TN, TP의 경우 10월 이후에 증가하는 경향을 보였으나 $NH_3$나 $PO_4{^{3-}}$는 전반적으로 낮았다. 식물플랑크톤 지표인 Chl-a와 BGA (blue green algae)는 7~8월에 급격한 상승을 보였으며 정체수역의 특성에 따라 녹조류(Selenastrum bibraianum, Pediastrum boryanum 등)와 사상형 남조류(Phormidium sp.)가 주요 종으로 출현하였다. 수중 이온($F^-$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$)은 보존성 물질인 $Cl^-$와 강한 상관관계를 보였다(R=0.70~0.97, p<0.05). 결론적으로 생태연못의 수질은 계절변화 또는 강우와 같은 외부 환경에 영향을 크게 받는 것으로 나타났으며, 유량의 증감과 밀접한 관계가 있음을 보였다. 이러한 결과를 근거로 향후 유휴공간에 적용된 생태연못의 효과적인 수질관리 및 생물다양성 증진을 위해서는 본 연구에서 조사된 특성들을 참고하여 생태적으로 상호 연계성 있는 고찰이 필요할 것으로 판단된다.
지난 10여 년간 딥러닝(Deep Learning)은 다양한 기계학습 알고리즘 중에서 많은 주목을 받아 왔다. 특히 이미지를 인식하고 분류하는데 효과적인 알고리즘으로 알려져 있는 합성곱 신경망(Convolutional Neural Network, CNN)은 여러 분야의 분류 및 예측 문제에 널리 응용되고 있다. 본 연구에서는 기계학습 연구에서 가장 어려운 예측 문제 중 하나인 주식시장 예측에 합성곱 신경망을 적용하고자 한다. 구체적으로 본 연구에서는 그래프를 입력값으로 사용하여 주식시장의 방향(상승 또는 하락)을 예측하는 이진분류기로써 합성곱 신경망을 적용하였다. 이는 그래프를 보고 주가지수가 오를 것인지 내릴 것인지에 대해 경향을 예측하는 이른바 기술적 분석가를 모방하는 기계학습 알고리즘을 개발하는 과제라 할 수 있다. 본 연구는 크게 다음의 네 단계로 수행된다. 첫 번째 단계에서는 데이터 세트를 5일 단위로 나눈다. 두 번째 단계에서는 5일 단위로 나눈 데이터에 대하여 그래프를 만든다. 세 번째 단계에서는 이전 단계에서 생성된 그래프를 사용하여 학습용과 검증용 데이터 세트를 나누고 합성곱 신경망 분류기를 학습시킨다. 네 번째 단계에서는 검증용 데이터 세트를 사용하여 다른 분류 모형들과 성과를 비교한다. 제안한 모델의 유효성을 검증하기 위해 2009년 1월부터 2017년 2월까지의 약 8년간의 KOSPI200 데이터 2,026건의 실험 데이터를 사용하였다. 실험 데이터 세트는 CCI, 모멘텀, ROC 등 한국 주식시장에서 사용하는 대표적인 기술지표 12개로 구성되었다. 결과적으로 실험 데이터 세트에 합성곱 신경망 알고리즘을 적용하였을 때 로지스틱회귀모형, 단일계층신경망, SVM과 비교하여 제안모형인 CNN이 통계적으로 유의한 수준의 예측 정확도를 나타냈다.
글로벌 경영환경 변화로 기술개발과 시장니즈의 불확실성이 커지고 기업 간 상호 경쟁이 심화되면서 개별 기업들의 연구개발 활동에 대한 관심과 요구가 증가하고 있다. 이러한 환경변화에 대응하기 위하여 연구개발 기업들은 설비투자에 더욱 신중을 가하면서 연구개발의 질적인 경쟁력을 제고시키기 위한 수단 중 하나로 연구개발 투자를 강화하고 있다. 결과적으로 설비나 연구개발 투자 요소는 연구개발 기업들의 입장에서는 미래 불확실성을 떠안아야하는 부담이 될 수 밖에 없다. 단지 연구개발 역량을 제고시키기 위한 수단으로 연구개발 투자를 증가시키는 경영 전략은 기업성과측면에서 불확실성이 높은 것이 사실이다. 본 연구에서는 데이터마이닝 기법을 활용하여 기업들의 연구개발 역량에 영향을 주는 특성들을 기술경영능력, 연구개발능력, 그리고 기업분류 속성 관점에서 탐색하고 이러한 개별 요인들이 연구개발 역량의 수준에 따라 나타나는 특성들을 탐색하였다. 이를 위해서 국내 연구개발 기업 전체를 대상으로 증거데이터에 근거해 군집분석과 실험결과를 제시하였다. 상기의 3개 관점마다 세부 평가지표를 각각 7개, 2개, 4개로 구성하여 해당 영역에서의 개별적인 수준을 정량적으로 측정하고자 하였다. 기술경영능력과 연구개발능력의 경우 현행 기술력 평가기관들이 주도적으로 활용하고 있는 소항목 평가지표를 참조하였으며, 이때 정량적으로 자료 확보가능한지 여부를 고려하여 최종적인 세부 평가지표를 새롭게 구성하였다. 기업분류 속성의 경우에는 가장 기본적인 기업 분류 프로파일 정보를 고려하여 구성하였다. 특히 연구개발 역량수준의 동질성 파악을 위해서 기술경영능력과 연구개발능력의 세부평가지표를 활용하여 개별기업별 종합점수를 부여하였으며, 이때 역량수준을 5개의 등급으로 분류하여 군집분석 결과와 비교하였다. 분석된 군집과 역량수준 등급과의 비교평가에 따른 의미를 부여하기 위해서 군집별로 연구개발 역량수준이 높은 경향과 낮은 경향이 존재하는 군집들을 탐색하였다. 이후 해당 군집에서 세부 평가지표에 따른 특징들을 분석하였다. 이와 같은 연구수행 방법을 통해 연구 개발 역량수준이 높은 군집이 2개, 낮은 군집이 1개로 분석되었으며, 나머지 2개의 군집들은 역량수준이 거의 높은 발생 빈도로 유사하게 나타났다. 결과적으로 본 연구에서는 역량수준이 높은 2개 군집과 낮은 1개의 군집들을 대상으로 세부 평가지표에 따른 개별적 특징들을 분석하였다. 본 연구의 결과가 제시하고 있는 시사점은 기술변화 속도와 시장수요의 변화에 효과적으로 대응할 수 있는 전문 경영자의 교체주기가 빠를수록 연구개발 역량 제고에 기여할 가능성이 높다는 점이다. 개인기업의 경우에 법인기업으로의 전환을 통해 연구개발 인력들의 기업에 대한 소속감을 제고시킴으로써 연구개발 역량의 투입강도를 높일 필요가 있으며, 조직적 측면에서도 팀단위의 조직구성을 통해 책임과 권한의 정확성을 제공할 필요가 있다는 점이다. 기술상용화 실적건수나 기술인증건수는 역량제고에 기여하는 경우와 그렇지 않은 경우 모두 발생되고 있어, 경영자 입장에서 연구개발 역량제고를 위한 중요 인자로 검토하는데 한계가 있는 것으로 확인되었다. 마지막으로 실용신안출원의 경험 여부는 연구개발 역량에 중요한 영향을 미치는 요인으로 파악되어, 연구개발 역량 제고를 위해서는 실용신안출원 장려를 위한 동기부여를 제공할 필요성을 확인하였다. 이처럼 본 연구결과는 개별 기업들의 연구개발 역량 제고를 위한 기업 경영전략의 중요한 시사점을 제공할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.