• Title/Summary/Keyword: Technical Environment Uncertainty

Search Result 33, Processing Time 0.025 seconds

Study on Emerging Security Threats and National Response

  • Il Soo Bae;Hee Tae Jeong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.34-41
    • /
    • 2023
  • The purpose of this paper is to consider the expansion of non-traditional security threats and the national-level response to the emergence of emerging security threats in ultra-uncertain VUCA situations. As a major research method for better analysis, the theoretical approach was referred to papers published in books and academic journals, and technical and current affairs data were studied through the Internet and literature research. The instability and uncertainty of the international order and security environment in the 21st century brought about a change in the security paradigm. Human security emerged as the protection target of security was expanded to individual humans, and emerging security was emerging as the security area expanded. Emerging security threatsthat have different characteristicsfrom traditionalsecurity threats are expressed in various ways, such as cyber threats, new infectious disease threats, terrorist threats, and abnormal climate threats. First, the policy and strategic response to respond to emerging security threats is integrated national crisis management based on artificial intelligence applying the concept of Foresight. Second, it is to establish network-based national crisis management smart governance. Third, it is to maintain the agile resilience of the concept of Agilience. Fourth, an integrated response system that integrates national power elements and national defense elements should be established.

Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads (지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석)

  • Jun-Tai, Jeon;Hoyoung Son;Bu-Seog, Ju
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.976-983
    • /
    • 2023
  • Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.

Study on Representation of Pollutants Delivery Process using Watershed Model (수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구)

  • Hwang, Ha Sun;Rhee, Han Pil;Lee, Sung Jun;Ahn, Ki Hong;Park, Ji Hyung;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

Improvement Plan for Public Institution Remote Security Model in the New-Normal Era (뉴노멀 시대의 공공기관 원격보안 모델 개선방안)

  • Shin, SeungWoo;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.104-112
    • /
    • 2022
  • The pandemic caused by the COVID-19 virus, which has lasted for the past three years, has changed society and the way people live in many ways. These changes also affect cyberspace, so the pre-pandemic information security model and standards have limitations when applied to the current situation. In this paper, a new method to improve the information security model of public institutions was proposed in consideration of various situations in the new normal era. In other words, through the proposed information security model, the possibility of external intrusion is blocked in advance through the policy and technical supplementation of remote work, which is a weakness of the existing information security operation of public institutions. Also, how to prevent abnormal authentication attempts by building a secure VPN environment, how to prevent social engineering cyber attacks targeting fear and uncertainty caused by COVID-19, and how to use a smooth network and create a remote work environment. For this purpose, methods for securing service availability were additionally presented.

Estimation of an Occupational Exposure Limit for Multi-Walled Carbon Nanotubes Manufactured in Korea (국내 일부 다중벽탄소나노튜브의 직업노출기준 추정)

  • Kim, Jong Bum;Kim, Kyung Hwan;Choi, Byung-Gil;Song, Kyung Seuk;Bae, Gwi-Nam
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.505-516
    • /
    • 2016
  • With the development of nanotechnology, nanomaterials are used in various fields. Therefore, the interest regarding the safety of nanomaterial use is increasing and much effort is diverted toward establishment of exposure assessment and management methods. Occupational exposure limits (OELs) are effectively used to protect the health of workers in various industrial workplaces. This study aimed to propose an OEL for domestic multi-walled carbon nanotubes (MWCNTs) based on animal inhalation toxicity test. Basic procedure for development of OELs was examined. For OEL estimation, epidemiological study and quantitative risk assessment are generally performed based on toxicity data. In addition, inhalation toxicity data-based no observed adverse effect level (NOAEL) and benchmark dose (BMD) are estimated to obtain the OEL. Three different estimation processes (NEDO in Japan, NIOSH in USA, and Baytubes in Germany) of OELs for carbon nanotubes (CNTs) were intensively reviewed. From the rat inhalation toxicity test for MWCNTs manufactured in Korea, a NOAEL of $0.98mg/m^3$ was derived. Using the simple equation for estimation of OEL suggested by NEDO, the OEL of $142{\mu}g/m^3$ was estimated for the MWCNT manufacturing workplace. Here, we used test rat and Korean human data and adopted 36 as an uncertainty factor. The OEL for MWCNT estimated in this work is higher than those ($2-80{\mu}g/m^3$) suggested by previous investigators. It may be greatly caused by different physicochemical properties of MWCNT and their dispersion method and test rat data. For setting of regulatory OELs in CNT workplaces, further epidemiological studies in addition to animal studies are needed. More advanced technical methods such as CNT dispersion in air and liquid should be also developed.

Ontology-Based Dynamic Context Management and Spatio-Temporal Reasoning for Intelligent Service Robots (지능형 서비스 로봇을 위한 온톨로지 기반의 동적 상황 관리 및 시-공간 추론)

  • Kim, Jonghoon;Lee, Seokjun;Kim, Dongha;Kim, Incheol
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1365-1375
    • /
    • 2016
  • One of the most important capabilities for autonomous service robots working in living environments is to recognize and understand the correct context in dynamically changing environment. To generate high-level context knowledge for decision-making from multiple sensory data streams, many technical problems such as multi-modal sensory data fusion, uncertainty handling, symbolic knowledge grounding, time dependency, dynamics, and time-constrained spatio-temporal reasoning should be solved. Considering these problems, this paper proposes an effective dynamic context management and spatio-temporal reasoning method for intelligent service robots. In order to guarantee efficient context management and reasoning, our algorithm was designed to generate low-level context knowledge reactively for every input sensory or perception data, while postponing high-level context knowledge generation until it was demanded by the decision-making module. When high-level context knowledge is demanded, it is derived through backward spatio-temporal reasoning. In experiments with Turtlebot using Kinect visual sensor, the dynamic context management and spatio-temporal reasoning system based on the proposed method showed high performance.

Research on the Use of Pseudonym Data - Focusing on Technical Processing Methods and Corporate Utilization Directions - (가명 데이터 활용연구 - 기술적 처리방법 및 기업의 활용방향을 중심으로 -)

  • Kim, Jung-Sun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.2
    • /
    • pp.253-261
    • /
    • 2020
  • This study examines the technologies and application processes related to the use of pseudonym data of companies after the passage of the Data 3 Act to activate the data economy in earnest, and what companies should prepare to use pseudonym data and what will happen in the process It was intended to contribute to the elimination of uncertainty. In the future, companies will need to extend the information security management system from the perspective of the existing IT system to manage and control data privacy protection and management from a third party provisioning perspective. In addition, proper pseudonym data use control should be implemented even in the data use environment utilized by internal users. The economic effect of market change and heterogeneous data combination due to the use of pseudonymized data will be very large, and standards for appropriate non-identification measures and risk assessment criteria for data utilization and transaction activation should be prepared in a short time.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

Technological Change and Organizational Strategy as an Evolutionary Process (진화론적 관점의 기술혁신의 동태성: 정보기술산업과 조직경쟁유형의 진화)

  • Cha, Dae-Kyu
    • Korean Business Review
    • /
    • v.11
    • /
    • pp.15-38
    • /
    • 1998
  • This study explores the evolution of technical innovation over time. It focuses on sectors of the information technology because this industry can be referred to as one of the most dynamic industries of all times. Following evolutionary theorists, we argue that technological change is gradual and that superior firms and technologies are reward by the' selection' environment. In the initial phase of the industry life cycle, technological change is expected to be radical and uncertainty is high. Over time a product or technology is likely to arise which stands out above all other products or technologies. These so-called 'basic designs' serve as sorts of 'technological guideposts' for further developments in the technology. Once a basic design established, technological progress tends to follow consistent paths or trajectories. The cumulative character of technological progress facilitates a rapid expansion of the boundaries of the technology until the natural limits of the technology are approached and technological progress slows down. Following ecological theories, supply-side developments in the industry are described on the basis of five different organizational types. On the basis of this pattern of market and technological evolution we came up with seven basic propositions.

  • PDF

A study on the application of legal design methodology for commercialization of security tokens

  • Sangyub Han;Hokyoung Ryu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.117-128
    • /
    • 2024
  • In this paper, we propose a process for deriving priority tasks using the legal design technique in a situation where there is high uncertainty in the market and legal system regarding the commercialization of security tokens based on blockchain and distributed ledger technology. To issue and distribute securities tokens, we conducted a legal design workshop with participants who applied for innovative financial services (financial regulatory sandbox). During the workshop, participants harmonized their interests and deliberated on readiness, considering both legal and technical factors. The aim was to ascertain the feasibility of identifying prioritized objectives for future endeavors. The legal design technique facilitates consensus-building among stakeholders in an uncertain environment by confirming and adjusting differing perspectives and disagreements based on mutual understanding. The key stages include the empathetic process called "Family Therapy," the "N whys" for problem definition, and the speculative scenario design for problem-solving. This approach distinguishes itself from user-centered design thinking. Given the diverse stakeholders involved, effective facilitation by the facilitator is crucial during the legal design workshop preparation and execution.