• Title/Summary/Keyword: Team Simulation

Search Result 950, Processing Time 0.033 seconds

A Methodology of Optimal Design for Solar Heating and Cooling System Using Simulation Tool

  • Lee, Dongkyu;Nam, Hyunmin;Lee, Byoungdoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.540-543
    • /
    • 2015
  • Solar energy is one of the most important alternative energy sources which have been shown to meet high levels of heating and cooling demands in buildings. However, the efficiencies to satisfy these demands using solar energy significantly vary based on the characteristics of individual building. Therefore, this paper is focused on developing the methodology which can help to design optimal solar system for heating and cooling to be in cooperated within the existing buildings according to their load profiles. This research has established the Solar Heating and Cooling (SHC) system which is composed of collectors, absorption chiller, boiler and heat storage tank. Each component of SHC system is analyzed and made by means of Modelica Language and Pistache tool is verified the results. Sequential approximate optimization (SAO) and meta-models determined to 15 design parameters to optimize SHC system. Finally, total coefficient of performance (COP) of the entire SHC system is improved approximately 7.3% points compared to total COP of the base model of the SHC system.

  • PDF

Simulation and Experiment of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션 및 실험)

  • Kwon, Sun-Hyung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2013
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. The simulation based on MATLAB/SIMULINK has validated at the transient state of the PMSG and an experiment using 3kW simulator has validated the LVRT control.

A Simulation Design for Multi Indenture Multi Echelon Systems with Lateral Transshipments (수평보급이 적용된 Multi Indenture Multi Echelon 시스템에 대한 시뮬레이션 설계)

  • Chung, Il-Han;Yun, Won-Young
    • IE interfaces
    • /
    • v.21 no.4
    • /
    • pp.354-364
    • /
    • 2008
  • This paper deals with a design problem of simulation for MIME (multi indenture and multi echelon) with lateral transshipment. Especially, we consider lateral transshipments in case that (S-1, S) ordering policy is used in multi echelon repair system. Some rules for ordering spare parts in lateral transshipments between the lowest-level units are studied and are implemented by an activity diagram in object-oriented method. By numerical examples, we compare regular (S-1, S) ordering policy and (S-1, S) policy with lateral transshipment.

Direct Numerical Simulation of Channel Flow with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1543-1551
    • /
    • 2003
  • The present study investigates turbulent flows subject to strong wall injection in a channel through a Direct Numerical Simulation technique. These flows are pertinent to internal flows inside the hybrid rocket motors. A simplified model problem where a regression process at the wall is idealized by the wall blowing has been studied to gain a better understanding of how the near-wall turbulent structures are modified. As the strength of wall blowing increases, the turbulence intensities and Reynolds shear stress increase rapidly and this is thought to result from the shear instability induced by the injected flows at the wall. Also, turbulent viscosity grows rapidly as the flow moves downstream. Thus, the effect of wall-blowing modifies the state of turbulence significantly and more sophisticated turbulence modeling would be required to predict this type of flows accurately.

Spare Part Optimization of MIME Systems using Simulation and Genetic Algorithms under Availability (가용도 제약하에 MIME 시스템에서 유전알고리즘과 시뮬레이션을 이용한 수리부속 최적화)

  • Chung, Il-Han;Yun, Won-Young
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.9-19
    • /
    • 2008
  • Spare part problem of MIME (Multi Indenture Multi Echelon) system under availability constraint has been studied for several decades. In most of existing studies, it was very difficult to obtain the optimal numbers of spare parts and some approximate methods were proposed under many restrictions. In this paper, we consider a simulation to estimate the total cost rate and system availability and a genetic algorithm to obtain the optimal numbers of spare parts. Some numerical examples are also studied.

The analysis of material flow in the plate warehouse by simulation

  • 제진권;윤종계
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.470-472
    • /
    • 1996
  • POSCO has a plan for facility expansion in plate mill by building No.3 Plate Mill. By No.3 Plate Mill's coming on line, POSCO' current plate production of 2.3 million tons will increase by over 1 million tons to 3.36 million tons (Currently, annual domestic demand for plates is 4.42 million tons). With the plan of facility expansion, POSCO also has the plan of integrating the Plate Warehouse. But, we came to have a question whether the roller table from the mill to the warehouse could carry extended products. Engineers working in the mill wanted to install transfer facility to reduce the load of the roller table, but the engineers in facility purchasing team didn't want to buy the new facility. So, We needed to analyzed the material flow by simulation. The simulation was done on the VAX system by SLAM II. And this project was done by two engineers for 2 months. In the end, we concluded that two transfer facilities are needed for material flow with no bottle neck point.

  • PDF

Statistical Simulation of Shift Force for a Manual Transmission

  • Kim, Joohyung;Park, Sangjoon;Hanlim Song;Chaehong Lim;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.471-480
    • /
    • 2004
  • Statistical simulation approaches are proposed to evaluate the shift feeling for a manual transmission. First, shift force simulator for the manual transmission is developed by considering the dynamic models of the external and internal linkage, synchronizer, and drivetrain. It is found that the shift force by the simulator shows a good correlation with the test results. Using the simulator, two kinds of statistical simulation approaches are proposed and the objective parameters that can be used to evaluate the shift feeling quantitatively are obtained. It is expected that the shift force simulator with the statistical approaches, developed in this study can be used as a useful design tool to evaluate the shift feeling in the initial design stage.

Simulation of Miniaturized n-MOSFET based Non-Isothermal Non-Equilibrium Transport Model (디바이스 시뮬레이션 기술을 이용한 미세 n-MOSFET의 비등온 비형형장에 있어서의 특성해석)

  • Choi, Won-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.329-337
    • /
    • 2001
  • This simulator is developed for the analysis of a MOSFET based on Thermally Coupled Energy Transport Model(TCETM). The simulator has the ability to calculate not only stationary characteristics but also non - stationary characteristics of a MOSFET. It solves basic semiconductor devices equations including Possion equation, current continuity equations for electrons and holes, energy balance equation for electrons and heat flow equation, using finite difference method. The conventional semiconductor device simulation technique, based on the Drift-Diffusion Model (DDM), neglects the thermal and other energy-related properties of a miniaturized device. I, therefore, developed a simulator based on the Thermally Coupled Energy Transport Model (TCETM) which treats not only steady-state but also transient phenomena of such a small-size MOSFET. In particular, the present paper investigates the breakdown characteristics in transient conditions. As a result, we found that the breakdown voltage has been largely underestimated by the DDM in transient conditions.

  • PDF

Development of the Dynamic Simulation Program of a Multi-Inverter Heat Pump under Frosting Conditions

  • Park Byung-Duck;Lee Joo-Dong;Chung Baik-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.113-122
    • /
    • 2004
  • In case of heat exchangers operating under frosting condition, the thermal resistance and the air-side pressure loss increase with a growth of frost layer. In this paper, a transient characteristic prediction model of the heat transfer for a multi-inverter heat pump with frosting on its surface was presented by taking into account the change of the fin efficiency due to the growth of the frost layer. This dynamic simulation program was developed for a basic air conditioning system composed of an evaporator, a condenser, a compressor, a linear electronic expansion valve, and a bypass circuit. The theoretical model was derived from measured heat transfer and mass transfer coefficients. We also considered that the heat transfer performance was only affected by the decrease of wind flow area. The calculated results were compared with the experimental results for frosting conditions.

Measuring hand kinematics in handball's game: A multi-physics simulation

  • Kun, Qian;Sanaa, Al-Kikani;H. Elhosiny, Ali
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2022
  • Handball sport, as its name postulates, is a team sport which highly physical workout. During a handball play, several ball impacts are applied on the hands resulting vibration in the forearm, upper arm, shoulders and in general in whole body. Hand has important role in the handball's game. So, understanding about the dynamics and some issues that improve the stability of the hand is important in the sport engineering field. Ulna and radius are two parallel bones in lower arm of human hand which their ends are located in elbow and wrist joint. The type of the joint provides the capability of rotation of the lower arm. These two bones with their ends conditions in the joints constructs a 4-link frame. The ulna is slightly thinner than radius. So, understanding about hand kinematics in handball's game is an important thing in the engineering field. So, in the current work with the aid of a multi-physics simulation, dynamic stability analysis of the ulna and radius bones will be presented in detail.