• Title/Summary/Keyword: Taylor-Series

Search Result 292, Processing Time 0.024 seconds

A CONVERGENCE CRITERION FOR SECANT METHOD WITH APPROXIMATE ZEROS

  • Kim, S.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.799-808
    • /
    • 1999
  • We estimate the speed of convergence of Secant method in one variable and multivariable case with a constant from the coefficients of Taylor series. We present a criterion to confirm that z is close enough to a zero for Secant method and compare with that of newton method.

Approximate Linearization of Nonlinear Systems (비선형 시스템의 근사 선형화)

  • 남광희;이균경;탁민제
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.690-695
    • /
    • 1991
  • The ability to linearize a nonlinear system by feedback and coordinate change reduces to finding an integrating factor for a one-form which is determined from the system dynamics. Utilizing Taylor series expansion of this one-form, we characterize approximate linearizabilitu. A constructive method is derived for approximate linearization up to order 2.

  • PDF

Dynamic Instability and Multi-step Taylor Series Analysis for Space Truss System under Step Excitation (스텝 하중을 받는 공간 트러스 시스템의 멀티스텝 테일러 급수 해석과 동적 불안정)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.289-299
    • /
    • 2012
  • The goal of this paper is to apply the multi-step Taylor method to a space truss, a non-linear discrete dynamic system, and analyze the non-linear dynamic response and unstable behavior of the structures. The accurate solution based on an analytical approach is needed to deal with the inverse problem, or the dynamic instability of a space truss, because the governing equation has geometrical non-linearity. Therefore, the governing motion equations of the space truss were formulated by considering non-linearity, where an accurate analytical solution could be obtained using the Taylor method. To verify the accuracy of the applied method, an SDOF model was adopted, and the analysis using the Taylor method was compared with the result of the 4th order Runge-Kutta method. Moreover, the dynamic instability and buckling characteristics of the adopted model under step excitation was investigated. The result of the comparison between the two methods of analysis was well matched, and the investigation shows that the dynamic response and the attractors in the phase space can also delineate dynamic snapping under step excitation, and damping affects the displacement of the truss. The analysis shows that dynamic buckling occurs at approximately 77% and 83% of the static buckling in the undamped and damped systems, respectively.

A Study on the Technique of Efficient TDOA Technique Direction Finding Using Drones (드론을 이용한 효율적인 TDOA 방향탐지 기법 연구)

  • Choi, Hong-Rak;Hah, Tae-Yeong;Kim, Young Won;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.97-104
    • /
    • 2018
  • In the conventional direction finding, the antenna is installed at a high position on the ground to detect the position of the target with the environment of the LOS(Line of Sight) as much as the signal receiving environment. However, in order to configure such environment, high cost and installation time were required. In this paper, we use TDOA(Time Difference of Arrival) technique to utilize drones in direction finding, so that four drones can be used for directions finding simulation. Simulations based on drone and TDOA direction finding were constructed using additional signal processing Taylor series and Exact Interactive Algorithm. In the simulation, the receiving power is defined by using the 800MHz path-loss model using the GPS information of the ground direction detection, and the position estimation performance is analyzed when the TDOA technique, the Taylor series, and the Exact Interactive Alogrithm are applied.

A Study on Environment Parameter Compensation Method for Robust Speech Recognition (잡음에 강인한 음성 인식을 위한 환경 파라미터 보상에 관한 연구)

  • Hong, Mi-Jung;Lee, Ho-Woong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.2 s.10
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, VTS(Vector Taylor Series) algorithm, which was proposed by Moreno at Carnegie Mellon University in 1996, is analyzed and simulated. VTS is considered to be one of the robust speech recognition techniques where model parameter conversion technique is adapted. To evaluation performance of the VTS algorithm, We used CMN(Cepstral Mean Normalization) technique which is one of the well-known noise processing methods. And the recognition rate is evaluated when white gaussian and street noise are employed as background noise. Also, the simulation result is analyzed in order to be compared with the previous one which was performed by Moreno.

  • PDF

Dynamic Synchronous Phasor Measurement Algorithm Based on Compressed Sensing

  • Yu, Huanan;Li, Yongxin;Du, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.53-76
    • /
    • 2020
  • The synchronous phasor measurement algorithm is the core content of the phasor measurement unit. This manuscript proposes a dynamic synchronous phasor measurement algorithm based on compressed sensing theory. First, a dynamic signal model based on the Taylor series was established. The dynamic power signal was preprocessed using a least mean square error adaptive filter to eliminate interference from noise and harmonic components. A Chirplet overcomplete dictionary was then designed to realize a sparse representation. A reduction of the signal dimension was next achieved using a Gaussian observation matrix. Finally, the improved orthogonal matching pursuit algorithm was used to realize the sparse decomposition of the signal to be detected, the amplitude and phase of the original power signal were estimated according to the best matching atomic parameters, and the total vector error index was used for an error evaluation. Chroma 61511 was used for the output of various signals, the simulation results of which show that the proposed algorithm cannot only effectively filter out interference signals, it also achieves a better dynamic response performance and stability compared with a traditional DFT algorithm and the improved DFT synchronous phasor measurement algorithm, and the phasor measurement accuracy of the signal is greatly improved. In practical applications, the hardware costs of the system can be further reduced.

Modeling and assessment of VWNN for signal processing of structural systems

  • Lin, Jeng-Wen;Wu, Tzung-Han
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.53-67
    • /
    • 2013
  • This study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake. The acceleration and applied force of a structure were measured at current time step and the velocity and displacement were estimated through linear integration. These data were used as input to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener neural network (VWNN) which contained the mathematical model to predict the acceleration. For alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized as the signal processing tool, including the Taylor series components in the input nodes of the neural network. The number of the intermediate layer nodes in the neural network model, containing the training and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the network weights, on prediction errors were provided. During the simulation stage, different earthquake excitations were tested with the optimized settings acquired from the training stage to find out which of the algorithms would result in the smallest error, to determine a proper simulation model.