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Approximate Linearization of Nonlinear Systems
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Abstract - The ability to linearize a nonlinear system by feedback and coordinate
change reduces to finding an integrating factor for a one-form which is determined

from the system dynamics. Utilizing Taylor series expansion of this one-form, we

characterize approximate linearizability. A constructive method is derived for

approximate linearization up to order 2.

1 Introduction

Linearization of nonlinear systems by coordinate transfor-
mation and state feedback has been one of the most active
research topics in recent years. Su [12] and Jakubczyk
and Respondek [6] characterized feedback linearizability,
i.e., the ability to linearize a system by a nonlinear state
feedback and coordinate change, in terms of the involu-
tiveness of vector fields, while Hermann [4] and Gardner
[2] studied the dual characterizations in terms of differen-
tial forms. The linearizability of nonlinear discrete-time
systems has also been studied extensively (3,8,11]. Feed-
back linearization offers a method of building a controller
for the nonlinear system by designing one for the equiva-
lent linear system and utilizing the transformation (from

linear to nonlinear) along with its inverse. These lineariza-
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tion techniques, being robust, tolerate some deviation from
perfect linearization [1]. This approach has already been
applied to the design of automatic flight-control systems
for aircraft {10}, motor controller design (5], etc.

On the other hand, since less restrictive conditions are
required for approximate linearization, this technique of-
fers the means of enlarging the class of nonlinear sys-
temns to which linearizing techniques are applicable. It was
shown in [7] that approximate linearization could be ob-
tained by weakening the hypotheses required for feedback
linearization. H. Lee and S. I. Marcus [9] obtained con-
ditions for the approximate linearization of discrete-time
systems through the expansion of higher order derivative
terms into planar matrices.

In this work, we first show that feedback linearizability
is equivalent to the existence of an integrating factor for
a one-form which is determined from the system dynam-
ics. Utilizing Taylor series expansion of this one-form, a
characterization of approximate linearizability is obtained.

We conclude with a complete analysis of approximate lin-
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earization up to order 2.

2 Preliminary Remarks and Definitions
Consider a single-input, single-output system
z=f(z)+ug(z), zeM, 1)

where M is a smooth n-dimensional manifold and f, g are

smooth vector fields on M. Since the questions addressed.

in this work are local in nature, we identify M with an
open neighborhood of the origin in R". We also assume
that f has an equilibrium (or fixed) point at z = 0. It
is well known that (1) is feedback linearizable if and only
if the vector fields {g,ad;g,...,ad} g} are linearly inde-
pendent, and sp{g,ad;g, ..., ad’,‘_’g} is an involutive dis-
tribution. The involutiveness of sp{g,adyg,..., ad'!“zg}
is equivalent to the existence of a nonzero scalar function
h: M — R satisfying < dh, ad}g>= 0,:=0,1,...,n—-2.
Hence, feedback linearizability of the system in (1) reduces
to the existence of a function h : M — R such that
{ <dh, adig>=0, i=0,1,...,n-2, @)
<dh, ad} 'g>+#£ 0.
If such a function h is available, one may directly obtain a
linearizing feedback u and coordinate transformation map
T. Specifically, if we let

u(?)

T(z) =

(o(0) = LAY/ L, Ly h, ®)
[ Lok ... La]” @)
the system is transformed into a linear system { = Al +bv,
where ¢ = T(z), v is the new input coordinate, and (A, b)
is a Brunovsky controllable pair. Obtaining a function A
satisfying (2), is not an easy task; in general, in order to do

80, one needs to solve a set of partial differential equations.

The following classical theorem is basic to our discussion.

Theorem 1. Let M be an n-dimensional manifold, TM
the tangent bundle on M, and wy,...,w, € T*M be a
basis of the cotangent bundle T*M. Let E C TM be a
subbundle with k-dimensional fiber and I( E) be the asso-
ciated ideal. Then, the following are equivalent:

i) E is integrable.

it) E is involutive.

iii) I(E) is a differential ideal locally generated by n — k
linearly independent one-forms w,,...,w,_x € T*M.

W)dw Awi A Aw,_, =0,for 1 <i<n.

HIHY Ajago) 24) Hus)

We will need the following definitions. Let z = {z,,...,
z,} be coordinate functions in R®, and a = (o, ... 10) &
multi-index, i.e., a n—tuple of non-negative integers. The
monomial z* and the differential operator D* are defined
by

%=z ... 25,

where D; = 6%
3

Wealsolet [al]= a1+ +a, and al = ! ... &, !

D* =D ... Don,

With these definitions, for a smooth function ¢ : R® —+

R, Taylor’s expansion formula takes the form

m
He) =80+ 32 DO + Rua(e), )
ot
where R,,,1(z) is the remainder term and the summation
is over all multi-indices a.
Definition: System (1) is feedback linearizable up to
order i, if there exists a coordinate transformation map
¢ = T(z) and a feedback u = B(z)v + a(z) such that, in

the new coordinates,
£ = (AL + O™ () + (b+ O'(&) v,

where OF(£) is the class of functions f such that
; AN

lim sy -
o Tl

Remark: From the infinitesimal linear approximation of

< 00

(1) around the equilibrium point, we obtain the system
z = Fz + Gu,

where F' = 8f/9z|;=0 and G = g(0). Hence, this linear
system approximates {1) up to order 1.

3 Approximate Linearization

We define the function matrix U(z) by
Ue) = [adj'g || adsg | o] (6)

and we assume that U(z) is full-rank in an open neighbor-
hood of 0. Further, we let

w(z) = [wi(z) ... wa(2)] =[1 0... 01U} (z). (7)

Since w(z) is defined to be the first row of the inverse of
the matrix U(z), it follows that

1=0,1,...,n—2,

<w, adyg>=0,
{ d (8)

<w, ad;‘lg >=1.
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With a slight abuse of notation, we define a one-form w by

w = Zw;d.t.-. (9
=1
Then, from (2) and (8) we observe that dh is parallel to w
if the system is feedback linearizable. Therefore, if the sys-
tem (1) is feedback linearizable, there must exist a scalar
function, namely an integrating factor, r : M — R such
that

dh = rw. (10)

We say that w is ezact with the help of an integrating factor
r if the form rw is exact. It follows from Theorem 1 that
the necessary and sufficient condition for the exactness of
0 or d(rw) A (rw) =
feedback linearizability is equivalent to the existence of an

the one-form rw is d(rw) = 0. Hence,

integrating factor r : M — R such that

Orw; _ Orw;
dz; ~ Oz’

1<i<j<n (11)

This conclusion is summarized in the following proposi-

tion.

Proposition 1. The system (1) is feedback linearizable
if and only if there exists a function r : M — R such that
(11) holds.

Proof: Necessity has already been discussed. It remains
to prove sufficiency. If there exist r such that (11) holds,
there exist a potential function, namely A, of rw. Then
with the input in (3) and the coordinate change (4), the
system (1) is linearized. [ ]

Given an integrating factor r, one can obtain k from
(10) and, thus, the linearizing feedback (3) and the coor-
dinate transformation map (4) can be easily constructed.
Hence, the problem of obtaining the desired coordinate
change and feedback reduces to that of obtaining an inte-
grating factor. But, solving (11) for r is a difficult problem.
However, in the case of approximate linearization, the sit-
uation is quite different. We start our discussion of this
problem with the analysis of approximate linearization up

to order 2:

Lemma 1. The system (1) is feedback linearizable up to

order 2 if and only if there exists a map r : M — R such
that

Orw; drw; .

———— = =1,2,...,n.

Proof: (Sufficiency) Let k: M — R be defined by
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r OO
h{z) = &(0)z + —z B noz,

where &(z) = r(z)w(z). Then from (12), we obtain

dh(z) = ©(0) + % z = (z) + O*z).

oz, _,

Therefore,

Leh =< dh, g>=<&, g> +0%(z) = O(z).
Since f(0) = 0, L; <dh, g>= O%z). Thus,

LyLsh = Ly <dh, g> — <dh, ad;g>= O%z).
Similarly, L L, = O (z) for 1 = 0,...,n — 2. With
E=T() =[h.. L;--'h] and u = (v— L}h)/L, L}k,
we obtain the system

Lk L,k
El = Lf+uy£= +u
L3k L, L} 'h
= AL+ bv+ O%z)u
= Af +bv + O%¢) + O &),
where
61 -0 0
A= and b=|"
0 1 0
00 ---0 1

(Necessity) Any approximate linearizable system up to or-
der 2 can be represented as & = (Az+0%(z))+(H+O%(z))v.
Then, w(z) = dz; + O*(z). Hence, for r(z) = 1, (12) fol-

lows. n

Lemma 1 may be extended, in a similar fashion, to an

arbitrarily high order case.

Proposition 2. The system (1) is feedback linearizable
up to order m > 2 if and only if there exists a function
r: M — R such that

3"" 67‘(0,'
0z 0z3? ... Oz Oz;

*=0

6"" (97‘0.)]’
—_— 1
8z 923 ... 0z Oz; :r=0’ (13)

forallt,7 =1,2,...,n and |a| =m — 2.

Proof: (Sufficiency) Let k: M — R be defined by

n m-1

h(z) =2(0)e + 3 30

a(:),' 0 :l‘a.’t", 14
i=1 |al=1 1+|‘1D"' © (14)

where w(z) = r(z)w(z). For i =1,...,n, let §; denote the
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multi-index of length n defined by (§;); = 1 and (&;); =0,
i#J. Then

oh(z) _ natl
5n = SO Ty’ SO

o x(u+6. 6x)
+ -#Zkla%o(l'” Do 1D°:(0) -(15)

Observe that, if 1 # k, then, for every multi-index o, with
ag > 0, there corresponds a multi-index & = a + §; — &,
with & > 0, and vice-versa. Then, by the hypothesis of
the Proposition, if o, > 0,

Di5;(0) = D55, (0) = D%@,(0), (16)
and, furthermore,
ap _ &k +1
1+ la})a! (I+a~6&+8&|)(a—6+68&)
&;
T+ana” w

Therefore, by (16) and (17) the second sum on the right
hand side of (15) reduces to

m-1

Y 7
iZk |af=1 (14 |a)a!
ag>0

D° w,(())z("”- -6) —

m-1 &

§I§;(l+, anal

D%,(0) z%. (18)

The second sum on the right hand side of (18) is over all

i coordinate is

multi-indices of order 1 to m — 1 whose &
positive. Thus, using (18) in (15), changing the variable
& to @, and combining the two summations in (15), we
obtain
oh(z)
Oz,

= J) + E Da z. (19)

|a|_
Hence, by (19) and (5),
dh(z) = O(z) + O™(z).

Evaluating the Lie derivatives, we obtain,

Lgh <dk, g>=<a, g> +0™(z),

L,L;k = L; <dh, g> — <dh, adsg>= O™(z),

and proceeding, in a similar fashion, L,L"fil = O™(z) for
1=0,...,n — 2. Therefore,

£ = Ab+bv+O™(z)u
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= Af+bv+ O™ () + O"(E)v.

(Necessity) Any approximate linearizable system up to or-
der m can be represented as

i = Az + bv + O™ (z) + O™ (z)v.

Then, w(z) = dzy + O™(z). Hence, with r(z) = 1, (13)
follows. .

4 Solving for the Integrating Factor

Proposition 2 does not offer a constructive method of ob-
taining the integrating factor r. In this Section, necessary
and sufficient conditions for the existence of an integrating
factor r are obtained for systems which are approximately
linearizable up to order 2. Solving for r in the general case

is fairly complicated.

Without loss of generality, let

r(z) =1 4+ T2y + - - + Fuzy + O¥(z)

and

w(z) = w(0) + Dyw(0) 21 + - + Dw(0) 2, + O¥(2).

Simplifying the notation, let @, = wi(0) and D&, =

D;wi(0), 3, k =1,...,n. Then, equation (12) reduces to

'T';UJ‘ —F,'E)-.' = D,G.- - Diwj, 1 S i:j S n. (20)

Representing (20) in matrix form, we obtain

[- Wq - 0

0 0
Wy -w 0 0
0 @ - 0 0 [ 7
B 00 -z 0 2
0 0 -o 0
0 0 Wy —w; 0
©, 0 0 0 ) Faot
0 @a 0 0 -, Fu
0 0 0 o Ty
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D@, — Dy,
D3y — Dy
D3i5p — Do
Doy — Dyi5,

qug - D;.Ez‘.

= Dyw3 — D3, (21)
D,.ZIJ] - Dl'w‘,,
DG, — D,

L ann—l - Dn—lwn ]

Let Q, = [@; ... ©,]7 and I, denote the identity ma-

trix of dimension n. For each n = 2,3,..., we define a

n
2

H, = [@; —w,) and inductively for n > 3 by

H,_, 0
H, = .
wn In-—l ‘Qn-l

Also let R, = [Fy ... 7,]7 and Q, denote the vector on
the right hand side of (21). Then, equation (21) takes the
form H, R, = },. Observe that (21) is invariant under

permutations of the subscripts {1,...,n}. Therefore, since

matrix H, of dimension ( ) x n as follows: For n = 2, let

Q, # 0, by (7), we may assume, without loss of generality
for the arguments that follow, that @, # 0. Then, since
@Wn I,_1 1s a minor of H,, the rank of H, is at least n—1. On

the other hand, H,, Q, = 0 and it follows that rank (H,) =

. f @nln =
n~1. The matrix K, = (—H,.T_l ), wherem = ("2 ), has
rank (";‘) and satisfies KT H, = 0. Thus, the span of K,
is precisely the kernel of HT. For (21) to have a solution
in R, it is necessary and sufficient that ], be orthogonal
to the kernel of HY or, equivalently, KT = 0. When

n = 3, this reduces to the requirement that
Ga(Dzwl—D,wz)+52(D,U;,—D35,)+'55,(D3&72-—Dzwg)zo.

For arbitrary n, we have the following Proposition.

Proposition 3. Suppose that the dimension of the system
is n and let k be any integer, 1 < k < n, such that @y # 0.
The system is feedback linearizable up to order 2 if and
only if, for all s < j € {1,...,n}, 1,7 # K,

EJ,‘(D,-B.- - D.‘U,‘) + ru‘,-(D,-w,, - D‘,ZZ)‘.‘)
+ @Wi(Dw; — Diwg) = 0. (22)

Proof: If £ = n, then a straightforward computation
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shows that the (";1) distinct equations in (22) are iden-
tical with the ones obtained from K7 €, = 0. Otherwise,
the same conclusion follows by observing that the system
of equations (21) is invariant under permutations of the
subscripts {1,...,n}. The rest follows from the previous

discussion. ]

Example: Consider a nonlinear system

z sin T + 2374 0
Al | et 0. (e
-""3 T4 0
4 0 1
Then,
Ulz) = [adlg | adlg | adsg | g]
S5 (@) —m 0
B 2z, -1 0 o
B 0 0 -1 0
0 0 0 1

Since < adyg, adig >=[~-2 0 0 0]T does not lie in sp
{9, ad;g, ad}g}, this distribution is not involutive. There-
fore, system (23) is not feedback linearizable. In the fol-
lowing we establish that the system is feedback linearizable

up to order 2. We have,
w(z)={10...00UYz) =

1 2
detU(z)[‘1 2= 23 52 0],

where det U(z) = 4z5(x3 — z3) + 224 + cos 73. Since @, =
—1 # 0, it follows that the system is feedback linearizable
up to order 2 if and only if for (i,5) = (2,3), (2,4), (3,4),

E,(D,-w.» - D,’Tﬁj) + U]'(D;EI - D,To‘i)

+ E,’(Dle - Dja)'l) = (. (24)

However, since the only nonzero derivative terms are D@,
= D)3 = 1 and D@, = 2, condition (24) is satisfied.
Solving (21), we obtain

[mrerard =000 -2,

or, equivalently, an integrating factor r{z) = 1 — 2z,. Fi-
nally, with
ery  (1=2xy)
oz) = det U(x)

[~1 23 — 23 z, 0,

and h(z) as defined in (14), we can linearize the system

up to order 2.
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