• Title/Summary/Keyword: Taylor model

Search Result 284, Processing Time 0.029 seconds

Validation of Hybrid Breakup Model and Vaporization Model for Analysis of GDI Spray Behavior (GDI 분무거동 해석을 위한 혼합분열모델 및 증발모델의 검증)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.187-194
    • /
    • 2005
  • The objective of this study is to validate the hybrid breakup model and the vaporization model for GDI spray analysis at vaporization and non-vaporization conditions. The atomization process is modeled by using hybrid breakup model that is composed of Linearized Instability Sheet Atomization (LISA) model and Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model. The vaporization process is modeled by using modified Abramzon & Sirignano model. The exciplex fluorescence method was used for comparing the calculated results with the experimental ones. The experiment and the calculation were performed at the ambient pressures of 0.1 MPa, 0.5 MPa and 1.0 MPa and the ambient temperature of 293K and 473K.

Power System Stabilizer using the Free Model

  • Kim, Ho-Chan;Oh, Seong-Bo;Lee, Kwang-Yeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.139.3-139
    • /
    • 2001
  • The free-model concept is introduced as an alternative intelligent system technique to design a controller with input and output data only. The idea of free model comes from the Taylor series approximation, where an output can be estimated when such data as position, velocity, and acceleration are known. The parameters in the free model can be estimated using the input-output data and a controller can be designed based on the free model. The free model thus developed is shown to be controllable, observable, and robust. The accuracy of the free-model approximation can be improved by increasing the observation window and the order of the free model. The LQR method is applied to the free model to design power system stabilizers ...

  • PDF

APPROXIMATION FORMULAS FOR SHORT-MATURITY NEAR-THE-MONEY IMPLIED VOLATILITIES IN THE HESTON AND SABR MODELS

  • HYUNMOOK CHOI;HYUNGBIN PARK;HOSUNG RYU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.3
    • /
    • pp.180-193
    • /
    • 2023
  • Approximating the implied volatilities and estimating the model parameters are important topics in quantitative finance. This study proposes an approximation formula for short-maturity near-the-money implied volatilities in stochastic volatility models. A general second-order nonlinear PDE for implied volatility is derived in terms of time-to-maturity and log-moneyness from the Feyman-Kac formula. Using regularity conditions and the Taylor expansion, an approximation formula for implied volatility is obtained for short-maturity nearthe-money call options in two stochastic volatility models: Heston model and SABR model. In addition, we proposed a novel numerical method to estimate model parameters. This method reduces the number of model parameters that should be estimated. Generating sample data on log-moneyness, time-to-maturity, and implied volatility, we estimate the model parameters fitting the sample data in the above two models. Our method provides parameter estimates that are close to true values.

Modeling of Liquid Droplet Atomization and Spray Wall Impingement of Diesel Sprays (디젤 엔진 분무의 액적 미립화 모델 및 벽면 충돌 모델에 관한 연구)

  • Kim, Hongsuk;Sung, Nakwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.69-81
    • /
    • 1999
  • In this research computational methods for the droplet atomization and spray wall impingement are studied for the non-evaporating diesel fuel spray. The TAB(Taylor Analogy Breakup) model and Wave model are compared with experiments in order to describe droplet atomization process. The Watkins model and O'Rourke model are compared to simulate the spray wall impingement. As a result, It is found that the application of the Wave model has a good agreement with the experimental data in the case of high pressure injection. With regard to wall Impingement phenomena, it is found that the Watkins model is appropriate to the high temperature cylinder wall condition, while the O'Rourke model is appropriate to cold starting problem.

A Study on the Noisy Speech Recognition Based on the Data-Driven Model Parameter Compensation (직접데이터 기반의 모델적응 방식을 이용한 잡음음성인식에 관한 연구)

  • Chung, Yong-Joo
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.247-257
    • /
    • 2004
  • There has been many research efforts to overcome the problems of speech recognition in the noisy conditions. Among them, the model-based compensation methods such as the parallel model combination (PMC) and vector Taylor series (VTS) have been found to perform efficiently compared with the previous speech enhancement methods or the feature-based approaches. In this paper, a data-driven model compensation approach that adapts the HMM(hidden Markv model) parameters for the noisy speech recognition is proposed. Instead of assuming some statistical approximations as in the conventional model-based methods such as the PMC, the statistics necessary for the HMM parameter adaptation is directly estimated by using the Baum-Welch algorithm. The proposed method has shown improved results compared with the PMC for the noisy speech recognition.

  • PDF

Numerical Investigation on Oil Spill from Damaged Riser (손상된 라이저로부터 유출된 기름 확산에 대한 수치해석)

  • Kim, Hyo Ju;Lee, Sang Chul;Park, Sunho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.99-110
    • /
    • 2016
  • When a riser is damaged, the oil spills to sea. Oil spills cause huge economic losses as well as a destruction of the marine environment. To reduce losses, it is needed to predict spilled oil volume from risers and the excursion of the oil. The present paper simulated the oil spill for a damaged riser using open source libraries, called Open-FOAM. To verify numerical methods, jet flow and Rayleigh-Taylor instability were simulated. The oil spill was simulated for various damaged leak size, spilled oil volume rates, damaged vertical locations of a riser, and current speeds. From results, the maximum excursion of the spilled oil at the certain time was predicted, and a forecasting model for various parameters was suggested.

Experimental Study and Modelling on Membrane Fouling in Taylor Vortex Flow Microfiltration (테일러 와류 정밀여과에서 막오염의 실험적 연구 및 모델링)

  • 박진용;김현우;최창균
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.88-100
    • /
    • 2003
  • A change of filtrate flux in Taylor vortex flow filtration was investigated experimentally by rotating speed of inner cellulose ester membrane cylinder (average pore size: 1.2 ${\mu}m$), slurry concentration, and particle size. The filtrate flux was a direct proportion relation with TMP, but an inverse relation with resistances. A change of cake resistance with time was examined by rotating speed, slurry concentration, and particle size. Initial resistance increased dramatically as raising slurry concentration, and the pseudo-steady state was maintained at high resistance value. However, times to reach the pseudo-steady state did not depend on slurry concentration. The resistance was larger as smaller particle size, because possibility of pore blocking inside membrane could be higher and shear effect should be lower as smaller particle size. A model equation suggested in this study was composed of particle deposition and removal terms, and could confirm well experimental data using average values of experimental coefficients.

An Improved Model for Structural Analysis of Cable-stayed Bridges (사장교의 구조해석을 위한 개선된 해석모델)

  • 최창근;김선훈;송명관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.69-76
    • /
    • 2000
  • In this study, an improved analysis model for the more efficient and accurate structural analysis of cable-stayed bridges is presented. In this model, beam elements, of which stability functions are stabilized by the use of Taylor's series expansions, are used to model space frame structures, and truss elements, of which equivalent elastic moduli are evaluated on the assumption that the deflected shape of a cable has a catenary function, are used to model cables. By using the proposed analysis model, nonlinear static analysis and natural vibration analysis of 2-dimensional and 3-dimensional cable-stayed bridges are carried out and are compared with the analysis results reported by other researchers.

  • PDF

Estimation of Failure Probability Using Boundary Conditions of Failure Pressure Model for Buried Pipelines (파손압력모델의 경계조건을 이용한 매설배관의 파손확률 평가)

  • Lee, Ouk-Sub;Kim, Eui-Sang;Kim, Dong-Hyeok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper presents the effect of boundary condition of failure pressure model for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with various corrosion defects for long exposure periods in years. A failure pressure model based on a failure function composed of failure pressure and operation pressure is adopted for the assessment of pipeline failure. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the corrosion pipeline.

  • PDF

Numerical Analysis on Effects of Radius Ratio in a Concentric Annulus with a Rotating Inner Cylinder (내부회전실린더를 가진 동심환형관에서 반경비의 영향에 관한 수치해석적 연구)

  • Bae, Kang-Youl;Kim, Hyoung-Bum;Lee, Sang-Hyuk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.327-330
    • /
    • 2006
  • This paper represents the numerical analysis on effects of radius ratio in a concentric annulus with a rotating inner cylinder. The numerical model consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8mm, the numerical parameters are angular velocity and radius ratio. Also, the whole walls of numerical model have no-slip and the working fluid is used water at $20^{\circ}C$. The numerical analysis is assumed the transient state to observe the flow variations by time and the 3-D cylindrical coordinate system. The calculation grid adopted a non-constant grid for dense arrangement near the wall side of cylinder, the standard $k-{\omega}$ high Reynolds number model to consider the effect of turbulence flow and wall, the fully implicit method for time term and the quick scheme for momentum equation. The numerical method is compared with the experimental results by Wereley and Lueptow, and the results are very good agreement. As the results, TVF isn't appeared when Re is small because of the initial flow instability is disappear by effect of the centrifugal force and viscosity. The vortex size is from 0.8 to 1.1 for TVF at various $\eta$, and the traveling distance for wavy vortex have the critical traveling distance for each case.

  • PDF