• Title/Summary/Keyword: Taxus cuspidata fruits

Search Result 6, Processing Time 0.019 seconds

Anti-aging Effects of The Extracts from Leaf, Stem, fruit and Seed of Yew (Taxus cuspidata Sieb) by Solvent Extraction Method

  • Kim, In-Young;Jung, Sung-Won;Lee, Joo-Dong;Ryoo, Hee-Chang;Zhoh, Choon-Koo
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.672-685
    • /
    • 2003
  • Yew (Taxus cuspidata Sieb.) chose that grow as medicine, food, decorative plant in Korea's Kyong-Gi province surroundings. Extracts of yew extracted leaf of 250 g and stems of 300 g with 1,3-butylene glycol (1,3-BG), propylene glycol (PG) and water. As results, external appearance of leaf extract of yew was slightly brown clear extract. The pH was 5.3$\pm$0.5, and specific gravity was 1.012$\pm$0.05, and refractive index was 1.375$\pm$0.05. Also, appearance of stem's extract was slightly brown clear extract, and the pH was 5.4$\pm$0.5, and specific gravity was 1.016$\pm$0.05, and refractive index was 1.358$\pm$0.05. Oil of yew separated from seeds, and extracted polysaccharide high purity from fruits. As a result, specific gravity of oil was 0.987, and obtained 40% of yield. Total polyphenols amount of yew extract is detected 0.563% in leaves, 0.325% in stems, whereas total tannins amount contained 0.054% and 0.037% each in leaves and stems. As effect in cosmetics, the anti-oxidative effect by DPPH method is 75.0% in leaves, and stems was 64.0%. Collagen synthesis rate was shown high activity by 54.16% in stem's extract, 33.18% in leaves' extract. Also, PPE-inhibitory activities were 13.7% and 23.5% each in leaves and stems. Anti-inflammatory effect of yew seed oil displayed superior effect of 41 % than control. Polysaccharide's molecular weight that is gotten from fruits was 5$\times$10$^4$~ 3$\times$10$^{5}$ dalton, and got 20.0$\pm$5% of yield.

  • PDF

Anti-aging Effects of The Extracts from Leaf, Stem, fruit and Seed of Yew (Taxus cuspidata Sieb) by Solvent Extraction Method

  • Kim, In-Young;Jung, Sung-Won;Lee, Joo-Dong;Ryoo, Hee-Chang;Zhoh, Choon-Koo
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.343-356
    • /
    • 2003
  • Yew (Taxus cuspidata Sieb.) chose that grow as medicine, food, decorative plant in Korea's Kyong-Gi province surroundings. Extracts of yew extracted leaf of 250 g and stems of 300 g with 1,3-butylene glycol (1,3-BG), propylene glycol (PG) and water. As results, external appearance of leaf extract of yew was slightly brown clear extract. The pH was 5.3$\pm$0.5, and specific gravity was 1.012$\pm$0.05, and refractive index was 1.375$\pm$0.05. Also, appearance of stem's extract was slightly brown clear extract, and the pH was 5.4$\pm$0.5, and specific gravity was 1.016$\pm$0.05, and refractive index was 1.358$\pm$0.05. Oil of yew separated from seeds, and extracted polysaccharide high purity from fruits. As a result, specific gravity of oil was 0.987, and obtained 40% of yield. Total polyphenols amount of yew extract is detected 0.563% in leaves, 0.325% in stems, whereas total tannins amount contained 0.054% and 0.037% each in leaves and stems. As effect in cosmetics, the anti-oxidative effect by DPPH method is 75.0% in leaves, and stems was 64.0%. Collagen synthesis rate was shown high activity by 54.16% in stem's extract, 33.18% in leaves' extract. Also, PPE-inhibitory activities were 13.7% and 23.5% each in leaves and stems. Anti-inflammatory effect of yew seed oil displayed superior effect of 41 % than control. Polysaccharide's molecular weight that is gotten from fruits was 5$\times$10$^4$~3$\times$10$^{5}$ dalton, and got 20.0$\pm$5% of yield.

  • PDF

Structure Determination of the Extractives from the Taxus Cuspidata Fruits (주목열매 추출물 구조분석)

  • Park, Se-Yeong;Choi, In-Gyu;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.566-575
    • /
    • 2013
  • The fruits of Taxus cuspidata were collected, divided into seeds and fruits, and extracted with 95% EtOH. The extracts were evaporated under the reduced vacuum pressure, concentrated, then successively fractionated with a series of n-hexane, dichloromethane, ethyl acetate and water on a separatory funnel to get some freeze dried samples. A portion of the EtOAc (arils:1.65 g, seeds:1.04 g) and $H_2O$ (arils:7 g, seeds:10 g) soluble samples were chromatographed on a Sephadex column using MeOH-$H_2O$ (1:1, 1:3, 1:5, v/v), EtOH-hexane (3:1, v/v) mixture and 100% $H_2O$ as eluting solvents to isolate pure compounds from the fractions. The isolates were developed by cellulose TLC using t-BuOH-HOAc-$H_2O$ (TBA; 3:1:1, v/v/v) and 6% aqueous HOAc. Visualization was done under ultraviolet light and by spraying the vanillin-HCl-EtOH reagent (4.8:12:480, v/v/v). followed by heating. The structures of the isolates were characterized by $^1H$- and $^{13}C$-NMR, DEPT, 2D-NMR, LC/MS and EI-MS spectra. In addition to the NMR and MS spectra, acid hydrolysis and permethylation were used to determine the correct structure of the isolated sugar compound. Their structures were elucidated as (+)-catechin (1), (-)-epicatechin (2), (+)-gallocatechin (3), (-)-epigallocatechin (4) and ${\beta}$-D-fructofuranose-($2{\rightarrow}4$)-O-${\beta}$-D-glucopyranose($1{\rightarrow}4$)-O-${\alpha}$-D-glucopyranose ($1{\rightarrow}2$)-O-${\beta}$-D-fructofuranose (5) on the basis of the above experimental evidences.

Anti-Oxidative and Anti-Diabetic Effects of Methanol Extracts from Medicinal Plants (약용식물 메탄올 추출물의 항산화 및 항당뇨 활성)

  • Lee, Youn Ri;Yoon, Nara
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.681-686
    • /
    • 2015
  • The purpose of this study was to measure total phenolic compounds as a measure of antioxidant activity as well as ${\alpha}$-amylase inhibitory and ${\alpha}$-glucosidase inhibitory activities as a measure of anti-diabetic efficacy in methanol extracts from 23 kinds of medicinal plants. Extracts of three medicinal plant species showing high total polyphenol contents were selected (Euonymus alatus stem, Taxus cuspidata fruit, and Eucommia ulmoides leaf). Extracts of six medicinal plant species showing over 60% DPPH radical scavenging activity were also selected [Eucommia ulmoides barks (80.10%), Lycium chinense roots (64.25%), Euonymus alatus stem (73.59%), Lespedeza cuneata (78.20%), Taxus cuspidata fruits (70.52%), and Tilia taquetii leaf and stem (67.81%)]. Regarding ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibitory activities acarbose showing approximately 80% inhibitory activity was selected as a control group, and six species (Eucommia ulmoides heartwood, Eucommia ulmoides bark, Euonymus alatus stem, Dioscorea batatas, Coix lachryma-jobi, and Phaseolus radiatus) showed greater than 80% ${\alpha}$-glucosidase inhibitory activity. Extracts of nine medicinal plant. species showing over 80% ${\alpha}$-amylase inhibitory activity (Pueraria thunbergiana root, Eucommia ulmoides bark, Eucommia ulmoides leaf, Lycium chinense fruits, Euonymus alatus leaf and stem, Euonymus alatus stem, Sasa borealis whole, Dioscorea batatas leaf and stem, and Tilia taquetii leaf and stem). Based on these results, medicinal plants showing high antioxidant and antidiabetic activities can be used as fundamental products in developing new medicines, as well as functional foods to prevent adult disease.

Anti-aging Effects of the Extracts from Leaf. Stem, Fruit and Seed of Yew (Taxus cuspidata Sieb) by Solvent Extraction Method (용매추출법에 의한 주목의 잎, 줄기, 과실 추출물의 항 노화 효과)

  • Kim, In-Young;Jung, Sung-Won;Ryoo, Hee-Chang;Zhoh, Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.211-219
    • /
    • 2004
  • Yew (Taxus cuspidata Sieb.) chose that grow as medicine, food, decorative plant in Korea's Kyong-Gi province surroundings. Extracts of yew extracted leaf of 250g and stems of 300g with 1,3-butylene glycol (l,3-BG), propylene glycol (PG) and water. As results, external appearance of leaf extract of yew was slightly brown clear extract. The pH was 5.3${\pm}$0.5, and specific gravity was 1.012${\pm}$0.05, and refractive index was l.375${\pm}$0.05. Also, appearance of stem's extract was slightly brown clear extract, and the pH was 5.4${\pm}$0.5, and specific gravity was 1.016${\pm}$0.05, and refractive index was 1.358${\pm}$0.05. Oil of yew separated from seeds, and extracted polysaccharide high purity from fruits. As a result, specific gravity of oil was 0.987, and obtained 40.0% of yield. Total polyphenols amount of yew extract is detected 0.563% in leaves, 0.325% in stems, whereas total tannins amount contained 0.054% and 0.037% each in leaves and stems. As effect in cosmetics, the anti-oxidative effect by DPPH method is 75.0% in leaves, and stems was 64.0%. Collagen synthesis rate was shown high activity by 54.16% in stem's extract, 33.18% in leaves' extract. Also, PPE-inhibitory activities were 13.7% and 23.5% each in leaves and stems. Anti-inflammatory effect of yew seed oil displayed superior effect of 41% than control. Polysaccharide's molecular weight that is gotten from fruits was 5${\times}$10$^4$-3${\times}$10$\^$5/ dalton, and got 20.0${\pm}$5% of yield.

An Analysis of Trends of Scientific Names presented in the Written Test for Engineer Landscape Architecture (조경기사 필기시험 중 조경식재분야 학명의 출제경향 분석)

  • Jung, Yong-Jo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.28-39
    • /
    • 2017
  • The purpose of this study was to analyze the tendencies of the written test questions regarding the scientific plant names in the subject of scenic planting in the national qualification test for landscape engineers. To achieve this purpose, targeting the 20 questions in the subject of scenic planting, the study chronologically analyzed the types of the presented questions about the scientific names of the plants, the changes in their year-to-year number, and their presentation frequency over the past 11 years from 2006 to 2016. The following was found by an analysis of the tendency of the questions presented over 11 years from 2006 to 2016 regarding the scientific plant names in scenic planting in the written test of the national technical qualification examination for landscape engineers. The number of these questions was 234, and they were classified into 13 items: scientific names, families/genuses/ species, characteristics, barks, roots, foliage, flowers, fruits, properties, places of origin, stalks, leave, and uses. After analyzing the examination question trends per year, the year in which the highest number of questions was given was 2013 at 56.6%; the ratio of questions asking botanical names increased until 2013, although that ratio decreased starting in 2014 due to consistent efforts from the landscaping field. The plant species most frequently asked about were Betula platyphylla and Taxus cuspidata and others frequently asked about included Pinus densiflora, Acer palmatum, Forsythia koreana, Cercis chinensis, Robinia pseudoacacia, Cornus officinalis, Zelkova serrata, Abies holophylla, Camellia japonica, Sophora japonica, Chaenomeles sinensis, which were asked about more than 10 times. The number of plant species presented as question items or choice items was 240 and their presentation frequency was 806, Among these, 66 species were steadily presented more than five times. They were presented 486 times, accounting for 27.5% of all species. The number of the new plant species which began to be presented in 2009 were 119(49.58% including Quercus myrsinaefolia) of all 240 species, indicating that their presentation frequency was gradually increased. As a result of comparative analysis of questions on arbor and shrub, evergreen and leaf abscission that have been presented for recent 11 years, the questions on arbor were more than shrub, the questions on leaf abscission were more than evergreen.