• Title/Summary/Keyword: Tasseled cap method

Search Result 12, Processing Time 0.024 seconds

Application of Landsat ETM Image Indices to Classify the Wildfire Area of Gangneung, Gangweon Province, Korea (강원도 강릉시 일대 산불지역 분류를 위한 Landsat ETM 영상 분류지수의 활용)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Chung, Gong-Soo;Lee, Jin-Young
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.754-763
    • /
    • 2004
  • This study was aimed to examine the Landsat Enhanced Thematic Mapper Plus (ETM+) index, which matches well with the field survey data in the wildfire area of Gangneung, Gangweon Province, Korea. In the wildfire area NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), and Tasseled Cap Transformation Index (Brightness, Wetness, Greenness) were compared with field survey data. NDVI and SAVI were very useful in detecting the difference between the wildfire and non-wildfire area, but not so in classify the soil types in the wildfire area. The soil plane based on the Tasseled Cap Transformation showed a better result in classifying the soil types in the wildfire areas than NDVI and SAVI, and corresponded well with field survey data. Using a linear function based on greenness and wetness in the Tasseled Cap Transformation is expected to provide a more efficient and quicker method to classify wildfire areas.

Calibration of NDVI Error at Shadow Areas with GRABS : Focused on Cheong City (GRABS 이용한 그림자 영역에서의 정규식생지수의 오차보정 : 청주시를 대상으로)

  • Ban, Yong-Un;Na, Sang-Il;Lee, Tae-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.297-305
    • /
    • 2010
  • This study has intended to analyze the nature of the errors that occur as a result of shadows during the process of NDVI calculation using high-resolution satellite images of Cheongju City, in order to calibrate such errors, and to verify the results. This study has calibrated the shadow errors by utilizing the relationship between the Greenness above Bare Soil (GRABS) calculated through Tasseled-Cap transformation and the original NDVI. To verify the accuracy of the results, this study has compared the shadow area extracted by the difference between before and after calibration of NDVI, with the original shadow area. The NDVI value converged on the value of -1.0, representing water, because shadow areas could not accept the reflection value from each band. However, after performing Tasseled-Cap transformation, the NDVI of shadow areas that had converged on -1.0 prior to calibration had increased to a level similar to the NDVI of neighboring areas. In addition, the average NDVI in general had increased from -0.08 to -0.01. Finally, the shadow area drawn out was almost matched to the original one, meaning that the NDVI calibration method employed turned out to be highly accurate in extracting shadow areas.

GENERATION OF AN IMPERVIOUS MAP BY APPLYING TASSELED-CAP ENHANCEMENT USING KOMPSAT-2 IMAGE

  • Koh, Chang-Hwan;Ha, Sung-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.378-381
    • /
    • 2008
  • The regulating and relaxing targets in the Land Use Regulation and Total Maximum Daily Loads are influenced by Land cover information. For the providing more accurate land information, this study attempted to generate an impervious surface map using KOMPSAT-2 image which a Korea manufactured high resolution satellite image. The classification progress of this study carried out by tasseled-cap spectral enhancement through each class extraction technique neither existing classification method. KOMPSAT-2 image of this study is enhanced by Soil Brightness Index(SBI), Green vegetation Index(GVI), None-Such wetness Index(NWI). Then ranges of extracted each index in enhanced image are determined. And then, Confidence Interval of classes was determined through the calculating Non-exceedance Probability. Spectral distributions of each class are changed according to changing of Control coefficient(${\alpha}$) at the calculated Non-exceedance Probability. Previously, Land cover classification map was generated based on established ranges of classes, and then, pervious and impervious surface was reclassified. Finally, impervious ratio of reclassified impervious surface map was calculated with blocks in the study area.

  • PDF

A study on detecting the change of environment in west Seohan bay, North Korea using satellite Image

  • Jo Myung-Hee;Jo Yun-Won;Kim Sung-Jae;Kim Hyoung-Sub;Lee Kwang-Jae;Yoo Hong-Ryoug
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.148-151
    • /
    • 2004
  • In this study the micro landform of tide flat in west Seohan bay. North Korea was classified and the change of this environment was detected by using Landsat TM. FTM+, KOMPAST. For this. ISODATA method of the unsupervised methods was used to classify the micro landform while tasseled cap method was used to detect the change of environment in west Seohan bay, North Korea by passing years. This study shows the possibility that the topography analysis and change especially in unapproachable area could be detected and monitored by using satellite images.

  • PDF

RGB Composite Technique for Post Wildfire Vegetation Monitoring Using Sentinel-2 Satellite Data (산불 후 식생 회복 모니터링을 위한 Sentinel-2 위성영상의 RGB 합성기술)

  • Kim, Sang-il;Ahn, Do-seob;Kim, Seung-chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.939-946
    • /
    • 2021
  • Monitoring of post wildfire provides important information for vegetation restoration. In particular, remote sensing data are known to provide useful information necessary for monitoring. However, there are insufficient research results which is monitoring the vegetation recovery using remote sensing data. This study is directed to monitoring post-wildfire vegetation restoration. It proposes a method for monitoring vegetation restoration using Sentinel-2 satellite data by compositing Tasseled Cap linear regression trend in a post wildfire study sites. Although it is a simple visualization technique using satellite images, it was able to confirm the possibility of effective monitoring.

Analysis of Forest Types and Estimation of the Forest Carbon Stocks Using Landsat Satellite Images in Chungcheongnam-do, South Korea (Landsat 위성영상을 이용한 충청남도 임상 분석 및 산림 탄소저장량 추정)

  • Kim, Sung Hoon;Jang, Dong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.2
    • /
    • pp.206-216
    • /
    • 2014
  • In this study, forest types in Chungheongnam-do were analyzed using Landsat satellite images and digital forest type map as a means to estimate forest carbon stocks. NDVI and Tasseled Cap, ISODATA, and supervised classification among others were used to analyze the forest types. The forest carbon stocks of Chungcheongnam-do were estimated utilizing forest statistical data derived from the classified results. The results indicate that the analysis of forest types through supervised classification yielded the highest overall accuracy in analyzing forest types using satellite images. Coniferous forests(49.3%) accounted for the highest proportion in all the forest types of Chungcheongnam-do, followed by deciduous forests(28.0%) and mixed forests(22.7%). The results of a comparative analysis between forest carbon stocks estimates made using the modified digital forest type map and other estimation methods showed that the method using Tasseled Cap and unsupervised classification yielded the most similar forest carbon stock estimates. The most significant difference, though, was made when only the digital forest type map was used. It is expected that if carbon stocks are estimated by integrating satellite images and digital forest type maps in the future, more accurate results can be derived in estimating forest carbon stocks at a national level.

  • PDF

AGE ESTIMATION TECHNIQUE OF INDUSTRIALIZED TIMBER PLANTATION USING VARIOUS REMOTE SENSING DATA

  • Kim, Jong-Hong;Heo, Joon;Park, Ji-Sang
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.94-97
    • /
    • 2006
  • Timber stand age information of timber in industrialized plantation forest is generally collected by field surveying which is labor-intensive, time-consuming, and very costly. It is also inconsistent in analyses perspective. As an alternative, The objective of this research is to present a practical solution for estimating timber age of loblolly pine plantation using Landsat thematic mapper (TM) images, shuttle radar topography mission (SRTM), and national elevation dataset (NED). A multivariate regression model was developed based upon satellite image-based information (i.e.normalized difference vegetation index (NDVI), tasseled cap (TC) transformation, and derived tree heights). A residual studentized technique was applied to remove potential outliers. After that, a refined age estimation model with a correlation coefficient R-square of 84.6% was obtained. Finally, the feasibility test of estimated model was performed by comparing estimated and measured stand ages of timber plantations using test datasets of plantation stands (2,032 stands). The result shows that the proposed method of this study can estimate loblolly pine stand age within an error of $2{\sim}3$ years in an effective and consistent way in terms of time and cost.

  • PDF

A Study of Tasseled Cap Transformation Coefficient for the Geostationary Ocean Color Imager (GOCI) (정지궤도 천리안위성 해양관측센서 GOCI의 Tasseled Cap 변환계수 산출연구)

  • Shin, Ji-Sun;Park, Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.275-292
    • /
    • 2014
  • The objective of this study is to determine Tasseled Cap Transformation (TCT) coefficients for the Geostationary Ocean Color Imager (GOCI). TCT is traditional method of analyzing the characteristics of the land area from multi spectral sensor data. TCT coefficients for a new sensor must be estimated individually because of different sensor characteristics of each sensor. Although the primary objective of the GOCI is for ocean color study, one half of the scene covers land area with typical land observing channels in Visible-Near InfraRed (VNIR). The GOCI has a unique capability to acquire eight scenes per day. This advantage of high temporal resolution can be utilized for detecting daily variation of land surface. The GOCI TCT offers a great potential for application in near-real time analysis and interpretation of land cover characteristics. TCT generally represents information of "Brightness", "Greenness" and "Wetness". However, in the case of the GOCI is not able to provide "Wetness" due to lack of ShortWave InfraRed (SWIR) band. To maximize the utilization of high temporal resolution, "Wetness" should be provided. In order to obtain "Wetness", the linear regression method was used to align the GOCI Principal Component Analysis (PCA) space with the MODIS TCT space. The GOCI TCT coefficients obtained by this method have different values according to observation time due to the characteristics of geostationary earth orbit. To examine these differences, the correlation between the GOCI TCT and the MODIS TCT were compared. As a result, while the GOCI TCT coefficients of "Brightness" and "Greenness" were selected at 4h, the GOCI TCT coefficient of "Wetness" was selected at 2h. To assess the adequacy of the resulting GOCI TCT coefficients, the GOCI TCT data were compared to the MODIS TCT image and several land parameters. The land cover classification of the GOCI TCT image was expressed more precisely than the MODIS TCT image. The distribution of land cover classification of the GOCI TCT space showed meaningful results. Also, "Brightness", "Greenness", and "Wetness" of the GOCI TCT data showed a relatively high correlation with Albedo ($R^2$ = 0.75), Normalized Difference Vegetation Index (NDVI) ($R^2$ = 0.97), and Normalized Difference Moisture Index (NDMI) ($R^2$ = 0.77), respectively. These results indicate the suitability of the GOCI TCT coefficients.

The extraction method for the best vegetation distribution zone using satellite images in urban area

  • Jo, Myung-Hee;Kim, Sung-Jae;Lee, Kwang-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.908-910
    • /
    • 2003
  • In this paper the extraction method for the best suitable green vegetation area in urban area, Daegu, Korea, was developed using satellite images (1994, 1999, Landsat TM). For this, the GIS overlay analysis of GVI (Green Vegetation Index), SBI (Soil Brightness index), NWI (None-Such wetness Index) was performed to estimate the best suitable green vegetation area. Also, the statistical documents, algorithm and Tasseled-Cap index were used to recognize the change of land cover such as cultivation area, urban area, and damaged area. Through the result of this study, it is possible to monitor the large sized reclamation of land by drainage or damaged area by forest fires. Moreover, information with the change of green vegetation and the status of cultivation by GVI, but also moisture content by percentage by NWI and surface class by SBI can be obtained.

  • PDF

The Cover Classification using Landsat TM and KOMPSAT-1 EOC Remotely Sensed Imagery -Yongdamdam Watershed- (Landsat TM KOMPSAT-1 EOC 영상을 이용한 용담댐 유역의 토지피복분류(수공))

  • 권형중;장철희;김성준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.419-424
    • /
    • 2000
  • The land cover classification by using remotely sensed image becomes necessary and useful for hydrologic and water quality related applications. The purpose of this study is to obtain land classification map by using remotely sensed data : Landsat TM and KOMPSAT-1 EOC. The classification was conducted by maximum likelihood method with training set and Tasseled Cap Transform. The best result was obtain from the Landsat TM merged by KOMPSAT EOC, that is, similar with statistical data. This is caused by setting more precise training set with the enhanced spatial resolution by using KOMPSAT EOC(6.6m${\times}$6.6m).

  • PDF