• Title/Summary/Keyword: Targeting protein

Search Result 471, Processing Time 0.028 seconds

Gene Targeting of Low Density Lipoprotein(LDL) Receptor Related Protein 5(LRP5) Involved in the Wnt Signaling Pathway

  • Jeong, Young-Hee;Kim, Suck-Ho;Kim, Dong-Ho;Moon, Seung-Ju;Tokuo Yamamoto;Kang, Man-Jong
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.82-82
    • /
    • 2002
  • The Wnt signaling pathway plays pivotal roles in embryonic development and oncogenesis through various signaling molecules inculding Frizzled receptor, recently characterized LRP5/6 and Dickkopf protein. Although Wnt signaling has been characterized in both developmental and oncogenic processes, little is known about its function in the normal adult. The ability of LRP5 to bind apolipoprotein E(apoE) and the abundant expression of LRP5 transcripts in hepatocytes, raise the possibility that LRP5 plays a role in the hepatic clearance of ApoE-containing chylomicron remonants, a major plasma lipoprotein carrying diet-derived cholesterol. (omitted)

  • PDF

The targeting peptides for tumor receptor imaging

  • Yim, Min Su;Ryu, Eun Kyoung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2016
  • Peptides have been developed for in vivo imaging probes against to the specific biomarker in the biological process of living systems. Peptide based imaging probes have been applied to identify and detect their active sites using imaging modalities, such as PET, SPECT and MRI. Especially, tumor receptor imaging with the peptides has been widely used to specific tumor detection. This review discusses the targeting peptides that have been successfully characterized for tumor diagnosis by receptor imaging.

Chemically Induced Cellular Proteolysis: An Emerging Therapeutic Strategy for Undruggable Targets

  • Moon, Seonghyeon;Lee, Byung-Hoon
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.933-942
    • /
    • 2018
  • Traditionally, small-molecule or antibody-based therapies against human diseases have been designed to inhibit the enzymatic activity or compete for the ligand binding sites of pathological target proteins. Despite its demonstrated effectiveness, such as in cancer treatment, this approach is often limited by recurring drug resistance. More importantly, not all molecular targets are enzymes or receptors with druggable 'hot spots' that can be directly occupied by active site-directed inhibitors. Recently, a promising new paradigm has been created, in which small-molecule chemicals harness the naturally occurring protein quality control machinery of the ubiquitin-proteasome system to specifically eradicate disease-causing proteins in cells. Such 'chemically induced protein degradation' may provide unprecedented opportunities for targeting proteins that are inherently undruggable, such as structural scaffolds and other non-enzymatic molecules, for therapeutic purposes. This review focuses on surveying recent progress in developing E3-guided proteolysis-targeting chimeras (PROTACs) and small-molecule chemical modulators of deubiquitinating enzymes upstream of or on the proteasome.

Mammalian target of rapamycin inhibitors for treatment in tuberous sclerosis

  • Kim, Won-Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.6
    • /
    • pp.241-245
    • /
    • 2011
  • Tuberous sclerosis complex (TSC) is a genetic multisystem disorder that results from mutations in the TSC1 or TSC2 genes, and is associated with hamartomas in several organs, including subependymal giant cell tumors. The neurological manifestations of TSC are particularly challenging and include infantile spasms, intractable epilepsy, cognitive disabilities, and autism. The TSC1- and TSC2-encoded proteins modulate cell function via the mammalian target of rapamycin (mTOR) signaling cascade, and are key factors in the regulation of cell growth and proliferation. The mTOR pathway provides an intersection for an intricate network of protein cascades that respond to cellular nutrition, energy levels, and growth factor stimulation. In the brain, TSC1 and TSC2 have been implicated in cell body size, dendritic arborization, axonal outgrowth and targeting, neuronal migration, cortical lamination, and spine formation. The mTOR pathway represents a logical candidate for drug targeting, because mTOR regulates multiple cellular functions that may contribute to epileptogenesis, including protein synthesis, cell growth and proliferation, and synaptic plasticity. Antagonism of the mTOR pathway with rapamycin and related compounds may provide new therapeutic options for TSC patients.

Targeting of Nuclear Encoded Proteins to Chloroplasts: a New Insight into the Mechanism

  • Lee, Yong-Jik;Kim, Yong-Woo;Pih, Kyeong-Tae;Hwang, Inhwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.407-409
    • /
    • 2000
  • Outer envelope membrane proteins of chloroplasts encoded by the nuclear genome are transported without the N-terminal transit peptide. Here, we investigated the targeting mechanism of AtOEP7, an Arabidopsis homolog of small outer envelope membrane proteins in vivo. AtOEP7 was expressed transiently in protoplasts or stably in transgenic plants as fusion proteins with GFP. In both cases AtOEP7:GFP was targeted to the outer envelope membrane when assayed under a fluorescent microscope or by Western blot analysis. Except the transmembrane domain, deletions of the N- or C-terminal regions of AtOEP7 did not affect targeting although a region closed to the C-terminal side of the transmembrane domain affected the targeting efficiency. Targeting experiments with various hybrid transmembrane mutants revealed that the amino acid sequence of the transmembrane domain determines the targeting specificity The targeting mechanism was further studied using a fusion protein, AtOEP7:NLS:GFP, that had a nuclear localization signal. AtOEP7:NLS:GFP was efficiently targeted to the chloroplast envelope despite the presence of the nuclear localization signal. Taken together, these results suggest that the transmembrane domain of AtOEP7 functions as the sole determinant of targeting specificity and that AtOEP7 may be associated with a cytosolic component during translocation to the chloroplast envelope membrane.

  • PDF

Inhibition of mIGF-1 and mGHR Gene Expression using Tetracycline-Inducible RNAi System in Mouse Liver Cell (Tetracycline 유도적인 RNAi System을 이용한 생쥐 성장 관련 유전자의 발현 억제)

  • Son, Hye Jin;Koo, Bon Chul;Kwon, Mo Sun;Lee, Young Man;Kim, Teoan
    • Reproductive and Developmental Biology
    • /
    • v.38 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • In this study, to further understand the mechanism of animal growth and to develop a miniature transgenic animal model, we constructed and tested tetracycline-inducible RNAi system using shRNA targeting the mRNA of mouse insulin-like growth factor (mIGF-1) or mouse growth hormone receptor (mGHR) gene. Quantitative real-time PCR analysis of mouse liver cell (Hepa1c1c7) cells transfected with these vectors showed 85% or 90% of expression inhibition effect of IGF-1 or GHR, respectively. In ELISA analysis, the protein level of IGF-1 in the cells expressing the shRNA targeting IGF-1 mRNA was reduced to 26% of non-transformed control cells. Unexpectedly, in case of using shRNA targeting GHR, the IGF-1 protein level was decreased to 75% of control cells. Further experiments are needed to explain the lower interference effect of GHR shRNA in IGF-1 protein. Accumulated knowledge of this approach could be applicable to a variety of related biological area including gene function study, gene therapy, development of miniature animals, etc.

Targeting cell surface glucose-regulated protein 94 in gastric cancer with an anti-GRP94 human monoclonal antibody

  • Hyun Jung Kim;Yea Bin Cho;Kyun Heo;Ji Woong Kim;Ha Gyeong Shin;Eun-bi Lee;Seong-Min Park;Jong Bae Park;Sukmook Lee
    • BMB Reports
    • /
    • v.57 no.4
    • /
    • pp.188-193
    • /
    • 2024
  • Gastric cancer (GC), a leading cause of cancer-related mortality, remains a significant challenge despite recent therapeutic advancements. In this study, we explore the potential of targeting cell surface glucose-regulated protein 94 (GRP94) with antibodies as a novel therapeutic approach for GC. Our comprehensive analysis of GRP94 expression across various cancer types, with a specific focus on GC, revealed a substantial overexpression of GRP94, highlighting its potential as a promising target. Through in vitro and in vivo efficacy assessments, as well as toxicological analyses, we found that K101.1, a fully human monoclonal antibody designed to specifically target cell surface GRP94, effectively inhibits GC growth and angiogenesis without causing in vivo toxicity. Furthermore, our findings indicate that K101.1 promotes the internalization and concurrent downregulation of cell surface GRP94 on GC cells. In conclusion, our study suggests that cell surface GRP94 may be a potential therapeutic target in GC, and that antibody-based targeting of cell surface GRP94 may be an effective strategy for inhibiting GRP94-mediated GC growth and angiogenesis.

Differential Expression of TPX2 upon Differentiation of Human Embryonic Stem Cells

  • Noh, Hye-Min;Choi, Seong-Jun;Kim, Se-Hee;Kim, Kye-Seong;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.221-226
    • /
    • 2007
  • Embryonic stem (ES) cells are known to have an infinite proliferation and pluripotency that are associated with complex processes. The objective of this study was to examine expression of genes differentially regulated during differentiation of human ES cells by suppression subtractive hybridization (SSH). Human ES cells were induced to differentiate into neural precursor cells via embryoid body. Neural precursor cells were isolated physically based on morphological criteria. Immunocytochemical analysis showed expression of pax6 in neural precursor cells, confirming that the isolated cells were neural precursor cells. Undifferentiated human ES cells and neural precursor cells were subject to the SSH. TPX2 (Targeting Protein for Xklp2 (Xenopus centrosomal kinesin-like protein 2)) was identified, cloned and analyzed during differentiation of human ES cells into neural lineages. Expression of TPX2 was gradually down-regulated in embryoid bodies and neural precursor cells relative to undifferentiated ES cells. Targeting Protein for Xklp2 has been shown to be involved in cell division by interaction with microtubule development in cancer cells. Taken together, result of this study suggests that TPX2 may be involved in proliferation and differentiation of human ES cells.