DOI QR코드

DOI QR Code

The targeting peptides for tumor receptor imaging

  • Yim, Min Su (Protein structure research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Department of Bio-analytical Science, University of Science and Technology) ;
  • Ryu, Eun Kyoung (Protein structure research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Department of Bio-analytical Science, University of Science and Technology)
  • Received : 2016.12.02
  • Accepted : 2016.12.16
  • Published : 2016.12.30

Abstract

Peptides have been developed for in vivo imaging probes against to the specific biomarker in the biological process of living systems. Peptide based imaging probes have been applied to identify and detect their active sites using imaging modalities, such as PET, SPECT and MRI. Especially, tumor receptor imaging with the peptides has been widely used to specific tumor detection. This review discusses the targeting peptides that have been successfully characterized for tumor diagnosis by receptor imaging.

Keywords

References

  1. Weissleder R and Mahmood U, Molecular imaging. Radiology 2001;219:316-333. https://doi.org/10.1148/radiology.219.2.r01ma19316
  2. Lee S, Xie J, and Chen X, Peptide-based probes for targeted molecular imaging. Biochemistry 2010;49:1364-1376. https://doi.org/10.1021/bi901135x
  3. Gentilucci L, De Marco R, and Cerisoli L, Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 2010;16:3185-3203. https://doi.org/10.2174/138161210793292555
  4. Rhyner MN, Smith AM, Gao X, Mao H, Yang L, and Nie S, Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine (Lond) 2006;1:209-217. https://doi.org/10.2217/17435889.1.2.209
  5. Gindy ME and Prud'homme RK, Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv 2009;6:865-878. https://doi.org/10.1517/17425240902932908
  6. Ishihara T, Shigemoto R, Mori K, Takahashi K, and Nagata S, Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 1992;8:811-819. https://doi.org/10.1016/0896-6273(92)90101-I
  7. Matsuno M, Matsui T, Iwasaki A, and Arakawa Y, Role of acetylcholine and gastrin-releasing peptide (GRP) in gastrin secretion. J Gastroenterol 1997;32:579-586. https://doi.org/10.1007/BF02934105
  8. Singh M and Mukhopadhyay K, Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. Biomed Res Int 2014;2014:874610.
  9. Tyler-McMahon BM, Boules M, and Richelson E, Neurotensin: peptide for the next millennium. Regul Pept 2000;93:125-136. https://doi.org/10.1016/S0167-0115(00)00183-X
  10. Burger M, Hartmann T, Krome M, Rawluk J, Tamamura H, Fujii N, Kipps TJ, and Burger JA, Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 2005;106:1824-1830. https://doi.org/10.1182/blood-2004-12-4918
  11. Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, and Skibicka KP, The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J Neurosci 2012;32:4812-4820. https://doi.org/10.1523/JNEUROSCI.6326-11.2012
  12. Langer M, La Bella R, Garcia-Garayoa E, and Beck-Sickinger AG, 99mTc-labeled neuropeptide Y analogues as potential tumor imaging agents. Bioconjug Chem 2001;12:1028-1034. https://doi.org/10.1021/bc015514h
  13. Weissleder R, Molecular imaging in cancer. Science 2006;312:1168-1171. https://doi.org/10.1126/science.1125949
  14. Sun X, Li Y, Liu T, Li Z, Zhang X, and Chen X, Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev 2016.
  15. Ruoslahti E, RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996;12:697-715. https://doi.org/10.1146/annurev.cellbio.12.1.697
  16. Schottelius M, Laufer B, Kessler H, and Wester HJ, Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 2009;42:969-980. https://doi.org/10.1021/ar800243b
  17. Chen X, Hou Y, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I, Bading JR, Laug WE, and Conti PS, Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. J Nucl Med 2004;45:1776-1783.
  18. Craig WS, Cheng S, Mullen DG, Blevitt J, and Pierschbacher MD, Concept and progress in the development of RGD-containing peptide pharmaceuticals. Biopolymers 1995;37:157-175. https://doi.org/10.1002/bip.360370209
  19. Gaertner FC, Kessler H, Wester HJ, Schwaiger M, an d Beer AJ, Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging 2012;39 Suppl 1:S126-138. https://doi.org/10.1007/s00259-011-2028-1
  20. Cai H and Conti PS, RGD-based PET tracers for imaging receptor integrin alphav beta3 expression. J Labelled Comp Radiopharm 2013;56:264-279. https://doi.org/10.1002/jlcr.2999
  21. Kim SM, Yoon S, Choi N, Hong KS, Murugan RN, Cho G, and Ryu EK, In vivo tumor imaging using polo-box domain of polo-like kinase 1 targeted peptide. Biomaterials 2012;33:6915-6925. https://doi.org/10.1016/j.biomaterials.2012.06.046
  22. Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nahrig J, Watzlowik P, Wester HJ, Harbeck N, and Schwaiger M, Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 2008;49:255-259. https://doi.org/10.2967/jnumed.107.045526
  23. Anastasi A, Erspamer V, and Bucci M, Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 1971;27:166-167. https://doi.org/10.1007/BF02145873
  24. Erspamer V, Erpamer GF, and Inselvini M, Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol 1970;22:875-876. https://doi.org/10.1111/j.2042-7158.1970.tb08465.x
  25. Nagalla SR, Barry BJ, Creswick KC, Eden P, Taylor JT, and Spindel ER, Cloning of a receptor for amphibian [Phe13]bombesin distinct from the receptor for gastrin-releasing peptide: identification of a fourth bombesin receptor subtype (BB4). Proc Natl Acad Sci U S A 1995;92:6205-6209. https://doi.org/10.1073/pnas.92.13.6205
  26. Fathi Z, Corjay MH, Shapira H, Wada E, Benya R, Jensen R, Viallet J, Sausville EA, and Battey JF, BRS-3: a novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 1993;268:5979-5984.
  27. Moody TW, Pert CB, Gazdar AF, Carney DN, and Minna JD, High levels of intracellular bombesin characterize human small-cell lung carcinoma. Science 1981;214:1246-1248. https://doi.org/10.1126/science.6272398
  28. Wood SM, Wood JR, Ghatei MA, Lee YC, O'Shaughnessy D, and Bloom SR, Bombesin, somatostatin and neurotensin-like immunoreactivity in bronchial carcinoma. J Clin Endocrinol Metab 1981;53:1310-1312. https://doi.org/10.1210/jcem-53-6-1310
  29. Sancho V, Di Florio A, Moody TW, and Jensen RT, Bombesin receptor-mediated imaging and cytotoxicity: review and current status. Curr Drug Deliv 2011;8:79-134. https://doi.org/10.2174/156720111793663624
  30. Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, and Reubi JC, Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 2008;49:318-326. https://doi.org/10.2967/jnumed.107.045054
  31. Ohki-Hamazaki H, Iwabuchi M, and Maekawa F, Development and function of bombesin-like peptides and their receptors. Int J Dev Biol 2005;49:293-300. https://doi.org/10.1387/ijdb.041954ho
  32. Yu Z, Ananias HJ, Carlucci G, Hoving HD, Helfrich W, Dierckx RA, Wang F, de Jong IJ, and Elsinga PH, An update of radiolabeled bombesin analogs for gastrin-releasing peptide receptor targeting. Curr Pharm Des 2013;19:3329-3341. https://doi.org/10.2174/1381612811319180015
  33. Cai QY, Yu P, Besch-Williford C, Smith CJ, Sieckman GL, Hoffman TJ, and Ma L, Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases. Prostate 2013;73:842-854. https://doi.org/10.1002/pros.22630
  34. Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, and Bruns C, Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2003;2:999-1017. https://doi.org/10.1038/nrd1255
  35. Breeman WA, de Jong M, Kwekkeboom DJ, Valkema R, Bakker WH, Kooij PP, Visser TJ, and Krenning EP, Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med 2001;28:1421-1429. https://doi.org/10.1007/s002590100502
  36. Reubi JC, Lang W, Maurer R, Koper JW, and Lamberts SW, Distribution and biochemical characterization of somatostatin receptors in tumors of the human central nervous system. Cancer Res 1987;47:5758-5764.
  37. Reubi JC, Waser B, Foekens JA, Klijn JG, Lamberts SW, and Laissue J, Somatostatin receptor incidence and distribution in breast cancer using receptor autoradiography: relationship to EGF receptors. Int J Cancer 1990;46:416-420. https://doi.org/10.1002/ijc.2910460315
  38. Reubi JC, Waser B, Sheppard M, and Macaulay V, Somatostatin receptors are present in small-cell but not in non-small-cell primary lung carcinomas: relationship to EGF-receptors. Int J Cancer 1990;45:269-274. https://doi.org/10.1002/ijc.2910450211
  39. Reubi JC, Horisberger U, Waser B, Gebbers JO, and Laissue J, Preferential location of somatostatin receptors in germinal centers of human gut lymphoid tissue. Gastroenterology 1992;103:1207-1214. https://doi.org/10.1016/0016-5085(92)91505-X
  40. de Jong M, Breeman WA, Kwekkeboom DJ, Valkema R, and Krenning EP, Tumor imaging and therapy using radiolabeled somatostatin analogues. Acc Chem Res 2009;42:873-880. https://doi.org/10.1021/ar800188e
  41. Maecke HR and Reubi JC, Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med 2011;52:841-844. https://doi.org/10.2967/jnumed.110.084236
  42. Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, Erchegyi J, Rivier J, Macke HR, and Reubi JC, Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 2006;103:16436-16441. https://doi.org/10.1073/pnas.0607761103
  43. Johnbeck CB, Knigge U, and Kjaer A, PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. Future Oncol 2014;10:2259-2277. https://doi.org/10.2217/fon.14.139
  44. Loo C, Lowery A, Halas N, West J, and Drezek R, Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709-711. https://doi.org/10.1021/nl050127s
  45. Zhang J, Jin W, Wang X, Wang J, Zhang X, and Zhang Q, A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm 2010;7:1159-1168. https://doi.org/10.1021/mp1000235
  46. Huo M, Zou A, Yao C, Zhang Y, Zhou J, Wang J, Zhu Q, Li J, and Zhang Q, Somatostatin receptor-mediated tumor-targeting drug delivery using octreotide-PEG-deoxycholic acid conjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosan micelles. 2012;33:6393-6407. https://doi.org/10.1016/j.biomaterials.2012.05.052