Since the early 1980s scholars have applied latent structure and other type of finite mixture models from various academic fields. Although the merits of finite mixture model are well documented, the attempt to apply the mixture model to medical service has been relatively rare. The researchers aim to try to fill this gap by introducing finite mixture model and segmenting inpatients DB from one general hospital. In section 2 finite mixture models are compared with clustering, chi-square analysis, and discriminant analysis based on Wedel and Kamakura(2000)'s segmentation methodology schemata. The mixture model shows the optimal segments number and fuzzy classification for each observation by EM(expectation-maximization algorism). The finite mixture model is to unfix the sample, to Identify the groups, and to estimate the parameters of the density function underlying the observed data within each group. In section 3 and 4 we illustrate results of segmenting 4510 patients data including menial and ratio scales. And then, we show AHP can be identify the attractiveness of each segment, in which the decision maker can select the best target segment.
A digital micro-mirror device (DMD) has the potential to modulate an incident wave with high speed, and the application for holographic display has been studied by many researchers. However, the quality of reconstructed image isn't good in comparison with that from a gray-scale amplitude-only hologram since it is a binary amplitude-only spatial light modulator (SLM). In this paper, we suggest a method generating a set of binary holograms to improve the quality of the reconstructed image. Here, we are concerned with the case for which the object plane is positioned at the Fourier domain of the plane of the SLM. In this case, any point in the Fourier plane is related to all points in the hologram. So there is a chance to generate a set of binary holograms illuminated by incident wave with constant optical power. Moreover, we find an interesting fact that the quality of reconstructed image is improved when the spatial frequency bandwidth of the binary hologram is limited. Therefore, we propose an iterative segmentation algorithm generating a set of binary holograms that are designed to be illuminated by the wave with constant optical power. The feasibility of our method is experimentally confirmed with a DMD.
In this paper, a new temporal decomposition method is proposed. where not oniy distortion but also entropy are involved in segmentation. The interpolation functions and the target feature vectors are determined by a dynamic Programing technique. where both distortion and entropy are simultaneously minimized. The interpolation functions are built by using a training speech corpus. An iterative method. where segmentation and estimation are iteratively performed. finds the locally optimum Points in the sense of minimizing both distortion and entropy. Simulation results -3how that in terms of both distortion and entropy. the Proposed temporal decomposition method Produced superior results to the conventional split vector-quantization method which is widely employed in the current speech coding methods. According to the results from the subjective listening test, the Proposed method reveals superior Performance in terms of qualify. comparing to the Previous vector quantization method.
Journal of the Korea Academia-Industrial cooperation Society
/
v.12
no.11
/
pp.4907-4913
/
2011
The purpose of this study is to find how the preferred properties of potential users for the outdoor space of the multi-family housing complex had changed according to time differance and to select the target market through market segmentation. The study has identified that the most important property among four properties had been changed from a Communication to a Amenity according to time difference. This is shown that considering information and communication as an important properties had been changed to regarding leisure and culture facilities as valuable properties.
Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.5
/
pp.1778-1797
/
2021
Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.
Deploying deep neural network model training performs remarkable performance in the fields of Object detection and Instance segmentation. To train these models, features are first extracted from the input image using a backbone network. The extracted features can be reused by various tasks. Research has been actively conducted to serve various tasks by using these learned features. In this process, standardization discussions about encoding, decoding, and transmission methods are proceeding actively. In this scenario, it is necessary to analyze the response characteristics of features against various distortions that may occur in the data transmission or data compression process. In this paper, experiment was conducted to inject various distortions into the feature in the object recognition task. And analyze the mAP (mean Average Precision) metric between the predicted value output from the neural network and the target value as the intensity of various distortions was increased. Experiments have shown that features are more robust to distortion than images. And this points out that using the feature as transmission means can prevent the loss of information against the various distortions during data transmission and compression process.
This study investigates the effect of perceived risk on attitude toward mobile Social Network Services (SNSs). First, we understand that perceived risk of SNSs is a multidimensional concept, and we study the relationship between attitude and perceived risk such as social risk, performance risk, and privacy risk in SNS environments. Subsequently, the relationships between these multidimensional concepts of perceived risk and attitude are investigated. The result indicates that social, performance, and privacy risk have negative effects on attitude. In addition, the moderated effect of individual characteristic variables such as hedonic value and self-construal are confirmed as mitigating factors that alleviate the negative impact of perceived risk. The Findings show that customers who perceive SNSs to be risky are more likely to have a negative attitude toward SNSs. However, the negative impact of perceived risk on their attitude toward SNSs is alleviated in customers with high hedonic value. Similarly, the negative impact of perceived risk on their attitude toward SNS is weaker with customers in interdependent self-construal. This paper presents effective segmentation variables, such as consumer's motivation (hedonic value) and psychological variable (self-construal), which mitigate the risk perception of customers. Therefore, it provides practical guidelines for the marketing managers in terms of who to target and what kind of strategies to implement in terms of these segmentation variables to approach consumers more efficiently.
Maniac consumers have a ripple effect on marketing because they are the main body of trends and consumer economy. So It is very important that we should first read needs and wants - in other words, psychological motives. And then we should find maniac consumer segments. This is an exploratory study that was done to obtain an insight for the new maniac consumer market segmentation. It examined the definition and characteristics of digital maniacs in Korea, and it carried out a literature study on consumers who have a similar consumption trend as the maniac users as a pre-study. Also, it looked into the trends and values of the maniac community in Korea, using the previous study's scale for innovative consumers. Next, the study interviewed maniac users using the first data and focused on discovering and grouping the new maniac segments based on the results. The study analyzed the purchase behaviors, decision-making, attitude for involvement and potential needs of the digital maniacs in Korea, and it discovered the segments for the segmentation of maniacs so it could find out the disposition and status of the digital maniacs. Such approach can be used as a strategical due for maniac target marketing and design(customer-oriented marketing and design) in the future.
Many periodic broadcasting schemes for near VoD systems are proposed. Recently non-uniform segmentation schemes have been used to develop periodic broadcasting techniques for near VoD. These techniques give significant reductions in start-up latency as compared with more conventional uniform segmentation. However, all of these schemes assume that the videos are CBR-encoded. Since a CBR-encoded video has a target average tate than an VBR encoding, there is potential to obtain further Performance Improvements by using VBR videos. Unfortunately, however, the studies concerning broadcasting with VBR video ate rare and the existing techniques have the problem of virtual loss. In this paper, we modify Skyscraper Broadcasting Scheme for broadcasting with VBR videos which is a representative non-uniform segmentation scheme lot CBR videos. A VBR video can be transmitted at constant bit rate (CBR) by using prefetching. With this idea we propose Modified Skyscraper Broadcasting Schemes for VBR videos and make performance evaluation by simulation. We show that our schemes have a better performance than Skyscraper Broadcasting Scheme for CBR videos.
Market segmentation helps providers to find better marketing opportunities and allows foodservice managers to develop the right product for each target market. Therefore, this study, taking university faculty and staff as subject, is intended to diagnose the relative value of service quality attribute, on the basis service quality scenario of faculty foodservice; to suggest price for improving customer loyalty in market segments. A questionnaire was developed ar d mailed to 600 Yonsei university faculty and staffs. A total of 385 questionnaires were usable; resulting in a 58.7% of faculty and a 69.7% of staff response rate, respectively. Statistical data analysis was completed using the SAS/Win 6.12 for descriptive Analysis, ANOVA, principal factor analysis, cluster analysis, reliability test and discriminant analysis. The results of the study are as below. Eighteen questions were selected for measuring respondents' lifestyle by AIO method and the seven lifestyle factors derived from factor analysis and aggregated distinct 4 clusters. Service quality attributes of the scenario were determined with 'food quality', 'menu variety', 'atmosphere', 'fast service', and 'clean and sanitation'. 'Food quality', 'menu variety', 'atmosphere', 'fast service', and 'clean and sanitation', in decreasing order, were identified as improving customer loyalty. However, most faculty and staffs were satisfied with the present meal price. The result of this study indicates that the relative value of service quality was differed significantly among the various market segments. 'Food quality', 'menu variety', and 'atmosphere' were determined as major service quality attributes. Thus, customer loyalty could be increased by improving food taste and quality, atmosphere, and service delivery. (Korean J Community Nutrition 8(4) : 556 ∼565, 2003)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.