• Title/Summary/Keyword: Target protein

Search Result 1,583, Processing Time 0.031 seconds

Role of the CCN protein family in cancer

  • Kim, Hyungjoo;Son, Seogho;Shin, Incheol
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.486-492
    • /
    • 2018
  • The CCN protein family is composed of six matricellular proteins, which serve regulatory roles rather than structural roles in the extracellular matrix. First identified as secreted proteins which are induced by oncogenes, the acronym CCN came from the names of the first three members: CYR61, CTGF, and NOV. All six members of the CCN family consist of four cysteine-rich modular domains. CCN proteins are known to regulate cell adhesion, proliferation, differentiation, and apoptosis. In addition, CCN proteins are associated with cardiovascular and skeletal development, injury repair, inflammation, and cancer. They function either through binding to integrin receptors or by regulating the expression and activity of growth factors and cytokines. Given their diverse roles related to the pathology of certain diseases such as fibrosis, arthritis, atherosclerosis, diabetic nephropathy, retinopathy, and cancer, there are many emerging studies targeting CCN protein signaling pathways in attempts to elucidate their potentials as therapeutic targets.

Recombinant Expression, Isotope Labeling and Purification of the Vitamin D Receptor Binding Peptide

  • Chae, Young-Kee;Singarapu, Kiran;Westler, W. Milo;Markley, John L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4337-4340
    • /
    • 2011
  • The vitamin D receptor binding peptide, VDRBP, was overexpressed as a fused form with the ubiquitin molecule in Rosetta(DE3)pLysS, a protein production strain of Escherichia coli harboring an induction controller plasmid. The fusion protein was bound to the immobilized metal ions, and the denaturation and renaturation of the fusion protein were performed as a part of the purification procedure. After the elution of the fusion protein, the peptide hormone was released from its fusion partner by using yeast ubiquitin hydrolase (YUH), and subsequently purified by reverse phase chromatography. The purity of the resulting peptide fragment was checked by MALDI-TOF mass and NMR spectroscopy. The final yields of the target peptide were around 5 and 2 mg per liter of LB and minimal media, respectively. The recombinant expression and purification of this peptide will enable structural and functional studies using multidimensional NMR spectroscopy and X-ray crystallography.

Function of Multimeric MADS Protein Complexes in Floral Organ Development of Plant

  • Park, Ji-Im;Moon, Yong-Hwan
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.163-169
    • /
    • 2005
  • Recent reports suggest that floral organs such as sepals, petals, stamens, and carpels are specified by quaternary MADS protein complexes with different combinations. The formation of quaternary complexes of ABCDE MADS proteins may be the molecular basis of ABCDE model for the floral organ development. The MADS complexes involved in each floral organ development seem to be conserved in at least dicot species although detailed molecular mechanism is slightly different depending on species. Even in monocot, at least rice, MADS complexes similar to those in dicot exist, suggesting that the floral organ specification by MADS protein complexes may be conserved in most of plants. The MADS protein complexes may have more specific recognition of target genes or more transcription activation ability than monomers or dimers, resulting in finely regulated floral organ development.

  • PDF

Selection of plasmodium falciparum (Pf) malaria specific diagnosis target proteins based on bioinformatics (생명정보학 기반 열대열 말라리아 특이 진단 타깃 단백질 선정)

  • Seo, Seung Hwan;Kim, Hak Yong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.61-62
    • /
    • 2014
  • 말라리아는 인체에 감염되는 열원충의 종류에 따라 크게 열대열 원충, 삼일열 원충, 사일열 원충, 난형열 원충으로 구분된다. 말라리아는 감염 후 치료시기를 놓칠 경우 사망에 이를 수 있는 위험한 질병이므로 초기 진단을 위한 Rapid Diagnostic Test(RDT) 키트가 중요하다. 기존의 진단키트의 경우, 열대열 말라리아와 삼일열 말라리아를 동시에 검출하여 치료법이 다름에도 불구하고 구분하여 진단하기가 어렵다. 이러한 이유로 본 연구에서는 열대열 말라리아에 특이적인 RDT키트 개발을 위해, PlasmoDB에서 열대열 말라리아 항원 단백질을 얻고 BLAST를 이용하여 열대열 말라리아에 특이적인 항원 단백질 후보군을 얻었다. 이후 감염단계에 따라 우선순위를 정하고 SPpred에서 제공하는 protein solubility prediction을 통해 실험적으로 단백질 발현 가능 여부를 확인한 결과, 최종적으로 histidine-rich protein II, histidine-rich protein III, glycophorin binding protein를 선정하였다. 이들 단백질을 이용한 열대열 말라리아 진단키트 제작은 열대열 말라리아 특이적 진단을 효과적으로 할 수 있다.

  • PDF

Expression of Mouse Synaptobrevin (VAMP) Gene in E. coli and its Cleavage by the Clostridium botulinum type B Toxin (Synaptobrevin (VAMP)유전자의 대장균에서의 발현 및 Clostridium botulinum type B 독소에 의한 절단)

  • 정현호;양기혁;이상달;양규환
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.417-421
    • /
    • 1997
  • Synaptobrevin is a kind of vesicle associated membrane proteins (VAMPs) which plays a secretary role in the neuronal synapse and was recently known as the biochemical target of botulinum neurotoxin type B. The structural gene of the synaptobrevin was cloned from mouse brain using RT-PCR technique and was seqrtenced. The deduced amino acid sequence showed that the synaptobrevin protein from mouse brain is exactly the same with that of the rat brain in the amino acid level. The synaptobrevin gene was subcloned into pET3a vector and expressed in E. coli. The molecular weight of the recombinant protein was 19 kDa as expected. Moreover, when the recombinant synaptobrevin protein was incubated with the native neurotoxin of Clostridium botulinum type B, it was cleaved by the toxin in a time dependent manner. This implies that the recombinant synaptobrevin protein and the native toxin are reacted in the same way as the native synaptobrevin did in the neuronal cells.

  • PDF

Protein Kinase A Functions as a Negative Regulator of c-Jun N-terminal Kinase but not of p38 Mitogen-activated Protein Kinase in PC12 Cells

  • Hur, Kyu-Chung
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.173-179
    • /
    • 2005
  • Cyclic-AMP-dependent protein kinase (PKA) seems to function as a negative regulator of the c-Jun $NH_2-terminal$ kinase (JNK) signaling pathway. We demonstrate here that the activity of the PKA catalytic subunit (PKAc) is reduced in apoptotic PC12 pheochromocytoma cells. Apoptotic progress was inhibited by dibutyryl cyclic AMP (dbcAMP), an analog of cAMP. The rescue by dbcAMP was attributable to inhibition of the JNK but not of the p38 signaling pathway, due to the induction of PKA activity. JNK was present in immunocomplexes of PKAc, and PKAc phosphorylated JNK in vitro. Presence of p38 kinase, however, was not prominent in immunocomplexes of PKAc. Our data suggest that JNK is a target point of negative regulation by PKAc in the JNK signaling pathway.

Screening of Medicinal Herbs for Inhibitory Activity against Protein Tyrosine Phosphatase 1B (생약의 Protein Tyrosine Phosphatase 1B 저해활성 검색)

  • Lee, Woo-Jung;Kim, Su-Nam;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.227-231
    • /
    • 2010
  • Protein tyrosine phosphatase 1B (PTP1B) is predicted to be therapeutic target in treatment of type 2 diabetes and obesity. Thus, in order to search for PTP1B inhibitors, we screened the inhibitory activity of PTP1B in the water extracts of 84 medicinal herbs. Among them, the extracts of Pini Folium, Magnoliae Cortex, Artemisiae asiaticae Herba, Schizonepetae Herba, Menthae Herba, Mume Fructus, Cimicifugae Rhizoma, and Amomi Cardamomi Fructus showed relatively significant (58-68%) inhibitory activity against PTP1B. Especially, the methylene chloride fraction of the methanol extract of Menthae Herba (81% inhibition at 30 ${\mu}g$/ml) showed more potent inhibitory activity against PTP1B than others.

Regulation of adductor muscle growth by the IGF-1/AKT pathway in the triploid Pacific oyster, Crassostrea gigas

  • Kim, Eun-Young;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.9
    • /
    • pp.19.1-19.10
    • /
    • 2019
  • We investigated the insulin-like growth factor 1 (IGF-1)/AKT signaling pathway involved in muscle formation, growth, and movement in the adductor muscle of triploid Pacific oyster, Crassostrea gigas. Large and small triploid oysters (LTs and STs) cultured under identical conditions were screened, and the signaling pathways of individuals with superior growth were compared and analyzed. mRNA and protein expression levels of actin, troponin, tropomyosin, and myosin, proteins important in muscle formation, were higher in LTs compared with STs. Expression levels of IGF-1, IGF binding protein (IGFBP), and IGFBP complex acid-labile subunit were also higher in LTs compared with STs. Phosphorylation of the IGF receptor as well as that of AKT was high in LTs. In addition, the expression of phosphomammalian target of rapamycin and phospho-glycogen synthase kinase $3{\beta}$ was increased and the expression of Forkhead box O3 was decreased in LTs. Therefore, we suggested that the IGF-1/AKT signaling pathway affects the formation, growth, and movement of the adductor muscle in triploid oysters.

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology

  • Bologna, Zuzana;Teoh, Jian-peng;Bayoumi, Ahmed S.;Tang, Yaoliang;Kim, Il-man
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.12-25
    • /
    • 2017
  • G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas ${\beta}$-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of ${\beta}$-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of ${\beta}$-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or ${\beta}$-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or ${\beta}$-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.