• Title/Summary/Keyword: Target diseases

Search Result 811, Processing Time 0.027 seconds

Using reverse docking to identify potential targets for ginsenosides

  • Park, Kichul;Cho, Art E.
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.534-539
    • /
    • 2017
  • Background: Ginsenosides are the main ingredients of ginseng, which, in traditional Eastern medicine, has been claimed to have therapeutic values for many diseases. In order to verify the effects of ginseng that have been empirically observed, we utilized the reverse docking method to screen for target proteins that are linked to specific diseases. Methods: We constructed a target protein database including 1,078 proteins associated with various kinds of diseases, based on the Potential Drug Target Database, with an added list of kinase proteins. We screened 26 kinds of ginsenosides of this target protein database using docking. Results: We found four potential target proteins for ginsenosides, based on docking scores. Implications of these "hit" targets are discussed. From this screening, we also found four targets linked to possible side effects and toxicities, based on docking scores. Conclusion: Our method and results can be helpful for finding new targets and developing new drugs from natural products.

Comparison of network pharmacology based analysis on White Ginseng and Red Ginseng (인삼(人蔘)과 홍삼(紅蔘)의 네트워크 약리학적 분석 결과 비교)

  • Park, Sohyun;Lee, Byoungho;Jin, Myungho;Cho, Suin
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.243-254
    • /
    • 2020
  • Objectives : Network pharmacology analysis is commonly used to investigate the synergies and potential mechanisms of multiple compounds by analyzing complex, multi-layered networks. We used TCMSP and BATMAN-TCM databases to compare results of network pharmacological analysis between White Ginseng(WG) and Red Ginseng(RG). Methods : WG and RG were compared with components and their target molecules using TCMSP database, and compound-target-pathway/disease networks were compared using BATMAN-TCM database. Results : Through TCMSP, 104 kinds of target molecules were derived from WG and 38 kinds were derived from RG. Using the BATMAN-TCM database, target pathways and diseases were screened, and more target pathways and diseases were screened compared to RG due to the high composition of WG ingredients. Analysis of component-target-pathway/disease network using network analysis tools provided by BATMAN-TCM showed that WG formed more networks than RG. Conclusions : Network pharmacology analysis can be effectively performed using various databases used in system biology research, and although the materials that have been reported in the past can be used efficiently for research on diseases related to targets, the results are unreliable if prior studies are focused on limited or narrow research areas.

Target Prediction Based On PPI Network

  • Lee, Taekeon;Hwang, Youhyeon;Oh, Min;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.65-71
    • /
    • 2016
  • To reduce the expenses for development a novel drug, systems biology has been studied actively. Target prediction, a part of systems biology, contributes to finding a new purpose for FDA(Food and Drug Administration) approved drugs and development novel drugs. In this paper, we propose a classification model for predicting novel target genes based on relation between target genes and disease related genes. After collecting known target genes from TTD(Therapeutic Target Database) and disease related genes from OMIM(Online Mendelian Inheritance in Man), we analyzed the effect of target genes on disease related genes based on PPI(Protein-Protein Interactions) network. We focused on the distinguishing characteristics between known target genes and random target genes, and used the characteristics as features for building a classifier. Because our model is constructed using information about only a disease and its known targets, the model can be applied to unusual diseases without similar drugs and diseases, while existing models for finding new drug-disease associations are based on drug-drug similarity and disease-disease similarity. We validated accuracy of the model using LOOCV of ten times and the AUCs were 0.74 on Alzheimer's disease and 0.71 on Breast cancer.

Exploring the Mechanisms and Target Diseases of Sasang Constitutional Prescription based on Multiscale Interactome (다계층 상호작용 네트워크 기반 사상처방의 작용 기전과 대상 질환 탐색 연구)

  • Won-Yung Lee;Ji Hwan Kim
    • Journal of Sasang Constitutional Medicine
    • /
    • v.35 no.4
    • /
    • pp.10-22
    • /
    • 2023
  • Objectives The aim of this study is to explore the mechanism of action and target diseases of Sasang constitutional prescriptions using a multiscale interactome approach. Methods The compound and target information of Sasang constitutional prescriptions were retrieved from various databases such as the TM-MC, STITCH, and TTD. Key targets for Sasang constitutional prescriptions were identified by selecting the top 100 targets based on the number of simple paths within the constructed network. Diffusion profiles for Sasang constitutional prescriptions and diseases were calculated based on a biased random walk algorithm. Potential diseases and key mechanisms of Sasang constitutional prescriptions were identified by analyzing diffusion profiles. Results We identified 144 Sasang constitutional prescriptions and their targets, finding 80 herbs with effective biological targets. A cluster analysis based on selecting up to 100 key targets for each prescription revealed a more cohesive grouping of prescriptions according to Sasang constitution. We then predicted potential diseases for 62 Sasang constitutional prescriptions using diffusion profiles calculated on a multiscale interactome. Finally, our analysis of diffusion profiles revealed key targets and biological functions of prescriptions in obesity and diabetes. Conclusions This study demonstrates the effectiveness of a multiscale interactome approach in elucidating the complex mechanisms and potential therapeutic applications of prescriptions in Sasang constitutional medicine.

Inhibition of protein tyrosine phosphatase non-receptor type 2 by PTP inhibitor XIX: Its role as a multiphosphatase inhibitor

  • Le, Hien Thi Thu;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.329-334
    • /
    • 2017
  • Protein tyrosine phosphatases (PTPs) play crucial roles in signal transduction and their functional alteration has been detected in many diseases. PTP inhibitors have been developed as therapeutic drugs for diseases that are related to the activity of PTPs. In this study, PTP inhibitor XIX, an inhibitor of CD45 and PTEN, was investigated whether it inhibits other PTPs. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) was selectively inhibited by the inhibitor in a competitive manner. Drug affinity responsive target stability (DARTS) analysis showed that the inhibitor induces conformational changes in PTPN2. Phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) at Tyr-705, a crucial site for STAT3 activation and target site of PTPN2, decreased upon exposure to the inhibitor. Our results suggest that PTP inhibitor XIX might be considered as an effective regulator of PTPN2 for treating diseases related to PTPN2.

Comparison of network pharmacology based analysis results according to changes in principal herb in Sagunja-tang (사군자탕(四君子湯)에서 군약(君藥)의 변화에 따른 네트워크 약리학적 분석 결과 비교)

  • Lee, Byoungho;Cho, Suin
    • Herbal Formula Science
    • /
    • v.27 no.3
    • /
    • pp.189-197
    • /
    • 2019
  • Objectives : The purpose of this study was to confirm whether Codonopsis Radix(CR) could be used in the same way for expected indications or diseases of adaptation instead of Ginseng Radix(GR), which acts as a principal herb in Sagunja-tang. Methods : The Traditional Chinese Medicine Systems pharmacology(TCMSP), a database for the study of systems biology related to Chinese medicine, screened potential active compounds in each quartet. By searching for all the proteins that each compound provides, the target of Sagunja-tang with GR(GRST) and the target of Sagunja-tang with CR(CRST) were compared using the network analysis method, and the top ranked target of each serving was selected. Results : Through TCMSP, a Chinese medicine database, the potential effective ingredients of GRST or CRST screened, and the target proteins related to these substances were found to be the most affected by Glycyrrhizae Radix et Rhizome, an herbal medicine mixed in Sagunja-tang, and the target diseases were the same. And the same were found for the target protein, gene and target diseases of GRST and CRST. Conclusions : The prescription with similar composition is likely to have similar network pharmacology analysis results, and the analysis result may be controlled by the herbal medicines which are assumed to be the main function. Therefore, rich and reproducible basic studies is more important because network pharmacological studies can be dominated by data that has been done a lot of previous studies.

Network pharmacoligical analysis for selection between Saposhnikoviae Radix and Glehniae Radix focusing on ischemic stroke (방풍(防風)과 해방풍(海防風) 중 뇌경색 연구에 더욱 적합한 약재 선정을 위한 네트워크 약리학적 분석)

  • Jin Yejin;Lim Sehyun;Cho Suin
    • Herbal Formula Science
    • /
    • v.31 no.3
    • /
    • pp.171-182
    • /
    • 2023
  • Objectives : Saposhnikoviae Radix (SR) and Glehniae Radix (GR) have been frequently used in traditional medicine to treat diseases related to 'wind' syndrome, but there have been cases where it has been mixed in a state where the plant of origin is not clear. In this study, to select materials for conducting preclinical cerebral infarction research, the network pharmacology analysis method was used to select suitable medicinal materials for the study. Methods : In this study, a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) based network pharmacology analysis method was used, and oral bioavailability (OB), drug likeness (DL), Caco-2 and BBB permeability were utilized to select compounds with potential activity. For the values of each variable used in this study, OB ≥ 20%, DL ≥ 0.18, Caco-2 ≥ 0, and BBB ≥ -0.3 were applied, then networks of bioactive compounds, target proteins, and target diseases was constructed. STRING database was used to construct a protein-protein interaction network. Results : It was confirmed that SR rather than GR has various target proteins and target diseases based on network pharmacological analysis using TCMSP database. And it was analyzed that the bioactive compounds only in SR act more on neurovascular diseases, and both drugs are expected to be effectively used for cardiovascular diseases. Conclusions : In our future study, SR will be used in an ischemic stroke mouse model, and the mechanism of action will be explored focusing on apoptosis and cell proliferation.

RNA Interference in Infectious Tropical Diseases

  • Kang, Seok-Young;Hong, Young-S.
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi.

PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins

  • Kim, Do-Hyoung;Han, Kyou-Hoon
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.889-899
    • /
    • 2018
  • Intrinsically disordered proteins (IDPs) are highly unorthodox proteins that do not form three-dimensional structures under physiological conditions. The discovery of IDPs has destroyed the classical structure-function paradigm in protein science, 3-D structure = function, because IDPs even without well-folded 3-D structures are still capable of performing important biological functions and furthermore are associated with fatal diseases such as cancers, neurodegenerative diseases and viral pandemics. Pre-structured motifs (PreSMos) refer to transient local secondary structural elements present in the target-unbound state of IDPs. During the last two decades PreSMos have been steadily acknowledged as the critical determinants for target binding in dozens of IDPs. To date, the PreSMo concept provides the most convincing structural rationale explaining the IDP-target binding behavior at an atomic resolution. Here we present a brief developmental history of PreSMos and describe their common characteristics. We also provide a list of newly discovered PreSMos along with their functional relevance.

Technical Aspects of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration

  • Kang, Hyo Jae;Hwangbo, Bin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.4
    • /
    • pp.135-139
    • /
    • 2013
  • Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is becoming a standard method for invasive mediastinal staging and for the diagnosis of paratracheal and peribronchial lesions. It is essential to understand the technical aspects of EBUS-TBNA to ensure safe and efficient procedures. In this review, we discuss the practical aspects to be considered during EBUS-TBNA, including anesthesia, manipulation of equipment, understanding mediastinal ultrasound images, target selection, number of aspirations needed per target, sample handling, and complications.