바이스태틱(Bistatic) 레이다는 기존의 모노스태틱(Monostatic) 레이다로는 수행하기 어려운 저피탐(stealth) 표적에 대한 탐지 및 식별을 용이하게 해준다. 하지만 표적식별을 위해 바이스태틱 레이다의 수신신호로부터 고해상도 거리 측면도(high resolution range profile: HRRP)를 형성할 시, 바이스태틱 고유의 기하구조로 인해 바이스태틱 HRRP 내 왜곡현상이 발생하고, 이는 표적에 대한 정확한 거리 정보를 획득하기 어렵게 한다. 더욱이 바이스태틱 HRRP 내 나타나는 표적의 전자기적 산란 메커니즘은 바이스태틱 기하구조에 따라 다양하게 변하기 때문에 효율적인 훈련 데이터베이스 구축은 바이스태틱 표적식별에서의 핵심 사항이 된다. 본 논문에서는 모노스태틱 표적식별에서 효과적인 성능을 보였던 비행 시나리오에 기반한 훈련 데이터베이스 구축 기법을 바이스태틱 표적식별에 적용해 보고, 그 성능과 효율성을 분석한다. 시뮬레이션에서는 레이다와 표적의 거리가 충분히 먼 경우, 비행시나리오에 기반한 데이터베이스를 이용하여 효율적으로 바이스태틱 표적식별을 수행할 수 있음을 보인다.
Synthetic Aperture Radar (SAR)영상은 날씨와 주야에 관계없이 취득될 수 있어 감시, 정찰 및 국토안보 등의 목적을 위한 자동표적인식(Automatic Target Recognition, ATR)에 활용 가능성이 높다. 그러나, 식별 시스템 개발을 위해 다양하고 방대한 양의 시험영상을 구축하는 것은 비용, 운용측면에서 한계가 있다. 최근 표적 모델을 이용하여 시뮬레이션된 SAR 영상에 기반한 표적 식별 시스템 개발에 대한 관심이 높아지고 있다. SAR-ATR 분야에서 대표적으로 이용되는 산란점 매칭과 템플릿 매칭 기반 알고리즘을 적용하여 표적식별을 수행하였다. 먼저 산란점 매칭 기반의 식별은 점을 World View Vector (WVV)로 재구성 후 Weighted Bipartite Graph Matching (WBGM)을 수행하였고, 템플릿 매칭을 통한 식별은 서로 인접한 산란점으로 재구성한 두 영상간의 상관계수를 사용하였다. 개발한 두 알고리즘의 식별성능시험을 위해 최근 미국 Defense Advanced Research Projects Agency (DARPA)에서 배포한 표적 시뮬레이션 영상인 Synthetic and Measured Paired Labeled Experiment (SAMPLE) 자료를 사용하였다. 표준 환경, 표적의 부분 폐색, 랜덤 폐색 정도에 따른 알고리즘 성능을 분석하였다. 산란점 매칭 알고리즘의 식별 성능이 템플릿 매칭보다 전반적으로 우수하였다. 10개 표적을 대상으로 표준환경에서의 산란점 매칭기반 평균 식별률은 85.1%, 템플릿 매칭기반은 74.4%이며, 표적별 식별성능 편차 또한 산란점 매칭기법이 템플릿 매칭기법보다 작았다. 표적의 부분 폐색정도에 따른 성능은 산란점 매칭기반 알고리즘이 템플릿 매칭보다 약 10% 높고, 표적의 랜덤 폐색 60% 발생에도 식별률이 73.4% 정도로 비교적 높은 식별성능을 보였다.
본 연구는 최근 세계보건기구(WHO)가 공식 질병으로 인정한 게임이용장애 분류기준이 국내에 도입되었을 때 어떠한 효과가 나타날 것인지 알아보기 위해 일반 성인 503명을 대상으로 설문조사를 시행하였다. 응답자의 사전지식 수준차를 고려하여 절반의 응답자를 게임이용장애 분류에 관한 정보성 기사를 제공하는 집단에 무선할당하였다. 또 국내 게임중독 선행연구를 종합적으로 검토하여 연구목적에 맞게 응답자를 정상이용집단과 잠재적 문제이용집단으로 분류하여 분석을 시행하였다. 그 결과, 게임이용장애 분류코드 등록은 정상집단과 잠재적 문제집단 모두에서 게임시간 24%, 게임비 28%, 이용 게임수 22%가 감소하는 등 전반적인 게임 수요를 감소시키는 영향을 갖는 것으로 나타났다. 잠재적 문제이용집단의 경우 게임이용장애 공식화 후 게임비용이 증가하더라도 게임비를 기꺼이 더 지불하겠다는 의향이 정상집단에 비해 높은 것으로 나타났고, 스트레스 수준이 높은 집단도 추가 비용 지불 의향이 높았는데, 이는 게임중독 문제 해결을 위한 정책의 효과가 미쳐야 하는 대상 집단에 오히려 경제적 비용 증가가 발생하는 역설적 영향이 발생할 수 있음을 시사한다. 따라서 게임장애 관련 정책을 수립할 때 이러한 문제집단, 특히 '스트레스 수준이 높은 집단', '자기통제력이 부족한 집단' 즉 중독성향이 높은 집단을 선별하여 정책의 타겟 집단으로 해야 질병코드 등록 정책효과가 나타날 수 있을 것으로 보인다. 또 게임장애에 관한 정보성 기사의 긍정적 효과는 이미 자기통제력 수준이 높은 게임이용자들에게만 집중적으로 나타나 정작 향후 정책의 영향을 받게 될 대상(잠재적 문제집단 중 중독성향이 강한 집단)의 태도와 행동 의도에는 별다른 영향력이 없는 것으로 확인되었다. 다시 한번 정책의 대상을 세분화하여 문제집단의 특성별로 정책을 정교화하는 핀셋 정책의 필요성을 확인하였다. 국내 여건에 관한 고려 없이 게임이용장애 분류를 도입할 경우 국내 게임이용자, 게임산업 및 유관 기업들에 부정적 영향과 손실을 끼칠 수 있으므로 산.관.학 협력을 통해 선제적 대응책을 마련해야 할것이라 판단된다.
The acoustical response of fish depends on size and physical structure na, most important, on the presence or absence of a swimbladder. Acoustic scattering models for swimbladdered fish represent a fish by an ideal pressure-release surface having the size and shape as the swimbladder. Target strength experiments of red seabream (Chrysophrys major) have been conducted using 38 (split-beam), 120 (split-beam) and 200kHz (dual-beam) frequencies. At each start of each experiment, the live fish are placed in the cage at the surface, then the cage is lowed to about $4{\cal}m$ depth where it remains during the measurements. To test the acoustic models, predictions of target strength based on swimbladder morphometries of 10 red seabream offish total length from $103{\cal}mm{\;}to{\;}349{\cal}mm$ ($3 <$TL/\lambda$ < 45)are compared with conventional target strength measurements on the same, shock-frozen immediately after caged experiments. X-ray was projected along dorsal aspect to know the morphological construction of swimbladder. and fish body. At high frequencies, Helmholtz-kirchhoff(HK) approximation would greatly enhance swimbladdered fish modeling. Sound scattering model [HK-ray approximation model] for comparison to experimental target strength data was used to model backscatter measurements from individual fish. The scattering data can be used in the inverse method along with multiple frequency sonar systems to investigate the adequacy of classification and identification of fish
데이터마이닝은 많은 양의 데이터로부터 의사결정에 유용한 패턴을 발견하는 과정으로서 최근 경영 및 공학 분야의 폭넓은 영역에서 많은 관심을 모으고 있다. 어떤 그룹을 여러 하위그룹으로 분류해내는 일은 데이터마이닝의 주요 내용 중 하나이다. 의사결정나무로 알려진 트리기반 기법은 그러한 분류모형을 수립하는 데 효율적인 방안을 제공한다 트리학습에 있어서 우선적인 관건은 목표변수에 의해 측정되는 노드불순도를 최소화하는 것이다. 하지만 공정관측, 마케팅과학, 임상분석 등과 같은 문제에서는 여러 목표변수를 동시에 고려해야 하는 상황이 쉽게 등장하는 데, 본 논문의 목적은 이처럼 다변량 목표변수를 갖는 데이터셋에서 활용할 수 있는 노드불순도 측정방안을 제시하는 데 있다. 아울러 수치 예를 이용하여 적용결과에 대해 논의한다.
전방 감시 차량용 레이다에서 표적 거리와 속도 정보를 얻기 위해서는 일반적으로 주파수 변조된 연속파형(FMCW)이나 펄스 도플러(PD) 파형을 사용하고 있다. 그러나 고해상도의 표적 정보를 얻기 위해서는 펄스 폭이 매우 좁고 넓은 대역폭을 사용하여야 하므로 상대적으로 높은 첨두 전력이 필요하고 고속의 디지털 변환 처리속도가 요구된다. 본 논문에서는 계단 주파수 변조된 펄스 도들러 파형을 이용하여 고해상도의 표적 정보를 획득할 수 있는 SFPD(Stepped-frequency Pulsed-Doppler) 처리 기법을 제시한다. 제안된 SFPD 기법은 시뮬레이션을 통하여 기존의 FMCW 및 펄스 도플러 파형 방식과 비교 분석하였다. 본 기법은 필요에 따라서 거리 및 도플러 해상도를 가변할 수 있는 장점이 있기 때문에 이론적으로 고해상도의 표적 영상 형성이 가능하여 향후 정밀한 차량 충돌 방지를 위한 표적 식별에 활용할 수 있을 것으로 기대한다.
수중환경 하에서 표적을 탐지하고 식별하는 문제는 군사적인 목적은 물론 비군사적 목적으로도 많은 연구가 수행되어 왔다. 수중환경에서의 수중음향 신호가 시간 공간적으로 특성이 변화하며 천해 다중경로 환경을 반영하는 복잡한 특성을 보이는 점으로 인해 능동 표적인식 기술은 매우 어려운 기술로 여겨져 왔다. 본 논문에서는 Fractional 푸리에 변환의 기본 개념과 최적 변환 차수에 대해 설명하고, 이를 이용하여 LFM 신호의 시간-주파수 특성과 스펙트럼 사이의 관계를 분석한다. 그리고 이러한 분석결과를 바탕으로 능동소나 표적 탐지 기법을 제안한다. 제안된 방법의 성능을 검증하기 위해, 기존의 FFT를 이용한 정합필터와 성능을 비교하였다. AUC(Area Under the ROC Curve)의 측면에서 볼 때 제안된 방식이 기존의 방법보다 성능이 우수한 실험결과를 보였다.
Purpose: For improving outgoing quality, this study presents a novel sampling framework based on predictive analytics. Methods: The proposed framework is composed of three steps. The first step is the variable selection. The knowledge-based and data-driven approaches are employed to select important variables. The second step is the model learning. In this step, we consider the supervised classification methods, the anomaly detection methods, and the rule-based methods. The applying model is the third step. This step includes the all processes to be enabled on real-time prediction. Each prediction model classifies a product as a target sample or random sample. Thereafter intensive quality inspections are executed on the specified target samples. Results: The inspection data of three Samsung products (mobile, TV, refrigerator) are used to check functional defects in the product by utilizing the proposed method. The results demonstrate that using target sampling is more effective and efficient than random sampling. Conclusion: The results of this paper show that the proposed method can efficiently detect products that have the possibilities of user's defect in the lot. Additionally our study can guide practitioners on how to easily detect defective products using stratified sampling
지형지물은 각각의 특징적 요인을 내포하고 있어 촬영된 위성영상에 반영된다. 촬영시기가 다른 영상을 통하여 변화에 대한 정보를 얻을 수 있다. 다중시기 영상을 무감독 방법으로 분류할 수 있다면 영상 분류의 정확도를 높여 주고, 여러 응용분야에 기여할 수 있다. 규칙기반 영상분류 알고리즘은 사람의 직접적인 개입이 없이 자동화된 방법으로 처리 되도록 개발되었으나, 불완전 요소에 결과가 영향 받는지 확인되어야 한다. 이 연구에서는 제주도 지역의 Landsat 영상으로 규칙기반 영상분류를 수행하였다. 영상의 구름의 존재하고 촬영시기의 차이가 있는 경우, 대상지가 도시, 산지, 농지 등 복합적인 경우에 대하여 적용 결과를 확인하였다. 구름이 있는 부분의 경우, 계수에 영향을 주지 않았으며, 촬영시기의 차이에 따라 분류규칙이 적절이 반영되었다. 제주시 도시지역의 확장, 서귀포시의 비닐하우스 등의 시설물 개체 수 증가 등을 파악 할 수 있었다. 제주도 지역의 공간정보 변화 파악과 분류 정확도를 얻을 수 있었다. 양질의 무감독 분류가 수행되는 것을 목표로 하여 방법의 일반화 및 개선방안을 모색하고자 하였다. 향후 도시개발, 환경변화 모니터링 등 영상 시계열 분석에 다양하게 활용될 수 있을 것이다.
TBM의 활용이 증가하면서 최근 국내에서도 머신러닝 기법으로 TBM 데이터를 분석하여 TBM 전방의 지반을 예측하고 디스크커터의 교환주기 예측 및 굴진율을 예측하는 연구가 수행되고 있다. 본 연구에서는 TBM 굴진 시 기계 데이터를 대상으로 전통적 암반에 대한 분류 기법과 최근에 다양한 분야에서 널리 사용되고 있는 머신러닝 기법들을 접목하여 슬러리 쉴드 TBM 현장의 암반 특성에 대한 분류 예측을 하였다. 암반 특성 분류 기준 항목을 RQD, 일축압축강도, 탄성파속도로 설정하고 항목별 암반상태를 클래스 0(양호),1(보통),2(불량)의 3개 클래스로 구분한 다음, 6개의 분류 알고리즘에 대한 기계학습을 수행하였다. 그 결과, 앙상블 계열의 모델이 좋은 성능을 보여주었고 특히 학습성능과 더불어 학습속도에서 우수한 결과를 보인 LigthtGBM 모델이 대상 현장 지반에서 최적인 것으로 나타났다. 본 연구에서 설정한 3가지 암반 특성에 대한 분류 모델을 활용하면 지반정보가 제공되지 않은 구간에 대한 암반 상태를 제공할 수 있어 굴착작업 시 도움을 줄 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.