• Title/Summary/Keyword: Target classification

Search Result 672, Processing Time 0.033 seconds

Asian Ethnic Group Classification Model Using Data Mining (데이터마이닝 방법을 이용한 아시아 민족 분류 모형 구축)

  • Kim, Yoon Geon;Lee, Ji Hyun;Cho, Sohee;Kim, Moon Young;Lee, Soong Deok;Ha, Eun Ho;Ahn, Jae Joon
    • The Korean Journal of Legal Medicine
    • /
    • v.41 no.2
    • /
    • pp.32-40
    • /
    • 2017
  • In addition to identifying genetic differences between target populations, it is also important to determine the impact of genetic differences with regard to the respective target populations. In recent years, there has been an increasing number of cases where this approach is needed, and thus various statistical methods must be considered. In this study, genetic data from populations of Southeast and Southwest Asia were collected, and several statistical approaches were evaluated on the Y-chromosome short tandem repeat data. In order to develop a more accurate and practical classification model, we applied gradient boosting and ensemble techniques. To infer between the Southeast and Southwest Asian populations, the overall performance of the classification models was better than that of the decision trees and regression models used in the past. In conclusion, this study suggests that additional statistical approaches, such as data mining techniques, could provide more useful interpretations for forensic analyses. These trials are expected to be the basis for further studies extending from target regions to the entire continent of Asia as well as the use of additional genes such as mitochondrial genes.

Application of Multi-Class AdaBoost Algorithm to Terrain Classification of Satellite Images

  • Nguyen, Ngoc-Hoa;Woo, Dong-Min
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.536-543
    • /
    • 2014
  • Terrain classification is still a challenging issue in image processing, especially with high resolution satellite images. The well-known obstacles include low accuracy in the detection of targets, especially for the case of man-made structures, such as buildings and roads. In this paper, we present an efficient approach to classify and detect building footprints, foliage, grass and road from high resolution grayscale satellite images. Our contribution is to build a strong classifier using AdaBoost based on a combination of co-occurrence and Haar-like features. We expect that the inclusion of Harr-like feature improves the classification performance of the man-made structures, since Haar-like feature is extracted from corner features and rectangle features. Also, the AdaBoost algorithm selects only critical features and generates an extremely efficient classifier. Experimental result indicates that the classification accuracy of AdaBoost classifier is much higher than that of the conventional classifier using back propagation algorithm. Also, the inclusion of Harr-like feature significantly improves the classification accuracy. The accuracy of the proposed method is 98.4% for the target detection and 92.8% for the classification on high resolution satellite images.

Optimizing Intrusion Detection Pattern Model for Improving Network-based IDS Detection Efficiency

  • Kim, Jai-Myong;Lee, Kyu-Ho;Kim, Jong-Seob;Kim, Kuinam J.
    • Convergence Security Journal
    • /
    • v.1 no.1
    • /
    • pp.37-45
    • /
    • 2001
  • In this paper, separated and optimized pattern database model is proposed. In order to improve efficiency of Network-based IDS, pattern database is classified by proper basis. Classification basis is decided by the specific Intrusions validity on specific target. Using this model, IDS searches only valid patterns in pattern database on each captured packets. In result, IDS can reduce system resources for searching pattern database. So, IDS can analyze more packets on the network. In this paper, proper classification basis is proposed and pattern database classified by that basis is formed. And its performance is verified by experimental results.

  • PDF

A Study on the Multi-sensor Data Fusion System for Ground Target Identification (지상표적식별을 위한 다중센서기반의 정보융합시스템에 관한 연구)

  • Gang, Seok-Hun
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.191-229
    • /
    • 2003
  • Multi-sensor data fusion techniques combine evidences from multiple sensors in order to get more accurate and efficient meaningful information through several process levels that may not be possible from a single sensor alone. One of the most important parts in the data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models, and parametric classification technique is usually used in multi-sensor data fusion system by its characteristic. In this paper, we propose a novel heuristic identification fusion method in which we adopt desirable properties from not only parametric classification technique but also cognitive-based models in order to meet the realtime processing requirements.

  • PDF

A model-free soft classification with a functional predictor

  • Lee, Eugene;Shin, Seung Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.635-644
    • /
    • 2019
  • Class probability is a fundamental target in classification that contains complete classification information. In this article, we propose a class probability estimation method when the predictor is functional. Motivated by Wang et al. (Biometrika, 95, 149-167, 2007), our estimator is obtained by training a sequence of functional weighted support vector machines (FWSVM) with different weights, which can be justified by the Fisher consistency of the hinge loss. The proposed method can be extended to multiclass classification via pairwise coupling proposed by Wu et al. (Journal of Machine Learning Research, 5, 975-1005, 2004). The use of FWSVM makes our method model-free as well as computationally efficient due to the piecewise linearity of the FWSVM solutions as functions of the weight. Numerical investigation to both synthetic and real data show the advantageous performance of the proposed method.

Facial Expression Classification through Covariance Matrix Correlations

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.505-509
    • /
    • 2011
  • This paper attempts to classify known facial expressions and to establish the correlations between two regions (eye + eyebrows and mouth) in identifying the six prototypic expressions. Covariance is used to describe region texture that captures facial features for classification. The texture captured exhibit the pattern observed during the execution of particular expressions. Feature matching is done by simple distance measure between the probe and the modeled representations of eye and mouth components. We target JAFFE database in this experiment to validate our claim. A high classification rate is observed from the mouth component and the correlation between the two (eye and mouth) components. Eye component exhibits a lower classification rate if used independently.

SAR Recognition of Target Variants Using Channel Attention Network without Dimensionality Reduction (차원축소 없는 채널집중 네트워크를 이용한 SAR 변형표적 식별)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • In implementing a robust automatic target recognition(ATR) system with synthetic aperture radar(SAR) imagery, one of the most important issues is accurate classification of target variants, which are the same targets with different serial numbers, configurations and versions, etc. In this paper, a deep learning network with channel attention modules is proposed to cope with the recognition problem for target variants based on the previous research findings that the channel attention mechanism selectively emphasizes the useful features for target recognition. Different from other existing attention methods, this paper employs the channel attention modules without dimensionality reduction along the channel direction from which direct correspondence between feature map channels can be preserved and the features valuable for recognizing SAR target variants can be effectively derived. Experiments with the public benchmark dataset demonstrate that the proposed scheme is superior to the network with other existing channel attention modules.

The extraction method of unstable frequency line generated by underwater target using extended Kalman filter (확장 칼만필터를 이용한 수중 표적의 불안정 주파수선 추출 기법)

  • Lee, Sung-Eun;Hwang, Soo-Bok;Nam, Ki-Gon;Kim, Jae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.104-109
    • /
    • 1996
  • In passive sonar system, frequency lines generated by underwater target are very important for detection, tracking and classification. In this paper, the extraction method of unstable frequency line from the time samples of the radiated noise of underwater target is studied. As unstable frequency line is time varying, an extended Kalman filter algorithm which is desirable for nonlinear system is applied to extract unstable frequency line. The proposed method shows good extraction of unstable frequency line by application of simulated signal and real target.

  • PDF

Target Strength Prediction of Scaled Model by the Kirchhoff Approximation Method (Kirchhoff 근사 방법을 이용한 축소모델의 표적강도 예측)

  • 김영현;주원호;김재수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.442-445
    • /
    • 2004
  • The acoustic target strength (TS) of submarine is associated with its active detection, positioning and classification. That is, the survivability of submarine depends on its target strength. So it should be managed with all possible means. An anechoic coating to existing submarine or changing of curvature can be considered as major measures to reduce the TS of submarine. It is mainly based on the prediction of its TS. Under this circumstances, a study on the more accurate numerical methods becomes big topic for submarine design. In this paper, Kirchhoff approximation method was adopted as a numerical tool for the physical optics region. Secondly, the scaled models of submarine were built and tested in order to verify its performance. Through the comparison, it was found out that the Kirchhoff approximation method could be good design tool for the prediction of TS of submarine.

  • PDF

Wide-Angle Radar Target Classification with Subclass Concept (Subclass 개념을 이용한 넓은 관측각에서의 레이더 표적인식 성능향상에 관한 연구)

  • 서동규;김경태;김효태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.777-782
    • /
    • 2002
  • The range profile is easily obtainable and promising feature vector in the aspect of real-time radar target recognition system. However, the range profile is highly dependent on a aspect angle of a target and this dependence make it difficult the recognition over wide-angular region. In this paper, we propose the classifier with subclass concept in order to solve this dependence problem. Recognition results using six aircraft models measured at compact range facility are presented to show the effectiveness of this proposed classifier over wide-angular region.