• Title/Summary/Keyword: Target Value

Search Result 2,200, Processing Time 0.026 seconds

Optimal PID Control for Temperature Control of Chiller Equipment (칠러장비의 온도제어를 위한 최적 PID 제어)

  • Park, Young-shin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.131-138
    • /
    • 2022
  • The demand for chiller equipment that keeps each machine at a constant temperature to maintain the best possible condition is growing rapidly. PID (Proportional Integral Derivation) control is a popular temperature control method. The error, which is the difference between the desired target value and the current system output value, is calculated and used as an input to the system using a proportional, integrator, and differentiator. Through such a closed-loop configuration, a desired final output value of the system can be reached using only the target value and the feedback signal. Furthermore, various temperature control methods have been devised as the control performance of various high-performance equipment becomes important. Therefore, it is necessary to design for accurate data-driven temperature control for chiller equipment. In this research, support vector regression is applied to the classic PID control for accurate temperature control. Simulated annealing is applied to find optimal PID parameters. The results of the proposed control method show fast and effective control performance for chiller equipment.

Performance Analysis of Adaptive Corner Shrinking Algorithm for Decimating the Document Image (문서 영상 축소를 위한 적응형 코너 축소 알고리즘의 성능 분석)

  • Kwak No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.4 no.2
    • /
    • pp.211-221
    • /
    • 2003
  • The objective of this paper is performance analysis of the digital document image decimation algorithm which generates a value of decimated element by an average of a target pixel value and a value of neighbor intelligible element to adaptively reflect the merits of ZOD method and FOD method on the decimated image. First, a target pixel located at the center of sliding window is selected, then the gradient amplitudes of its right neighbor pixel and its lower neighbor pixel are calculated using first order derivative operator respectively. Secondly, each gradient amplitude is divided by the summation result of two gradient amplitudes to generate each local intelligible weight. Next, a value of neighbor intelligible element is obtained by adding a value of the right neighbor pixel times its local intelligible weight to a value of the lower neighbor pixel times its intelligible weight. The decimated image can be acquired by applying the process repetitively to all pixels in input image which generates the value of decimated element by calculating the average of the target pixel value and the value of neighbor intelligible element. In this paper, the performance comparison of proposed method and conventional methods in terms of subjective performance and hardware complexity is analyzed and the preferable approach for developing the decimation algorithm of the digital document image on the basis of this analysis result has been reviewed.

  • PDF

A Study on Power Spectrum Algorithm for Signal Resolution Improvement (신호 분해능 향상을 위한 전력스펙트럼 알고리즘 연구)

  • Lee, Kwan-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.153-158
    • /
    • 2020
  • In this paper, we studied an algorithm for estimating a desired target by removing noise and interference in a wireless communication environment. When an information signal with a mixture noise and interference receive a receiver, noise and interference signals must be removed to accurately estimate a desired target. In order to divide the received signal region into two spatial, a power spectrum is obtained by analyzing a correlation matrix, covariance, eigen vector, and eigen value. The proposed spectrum is an algorithm that can remove noise and interference, and analyzes the existing algorithm and target estimation performance through simulation. As a result of simulation, the target estimation resolution of existing algorithm is more than 10°, but the resolution of the proposed algorithm is less than 10°. The proposed algorithm has improved the resolution of about 5° than the exiting algorithm. The proposed algorithm proved that the target estimation accuracy and resolution are superior to the existing algorithm.

Area-Based Q-learning Algorithm to Search Target Object of Multiple Robots (다수 로봇의 목표물 탐색을 위한 Area-Based Q-learning 알고리즘)

  • Yoon, Han-Ul;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.406-411
    • /
    • 2005
  • In this paper, we present the area-based Q-learning to search a target object using multiple robot. To search the target in Markovian space, the robots should recognize their surrounding at where they are located and generate some rules to act upon by themselves. Under area-based Q-learning, a robot, first of all, obtains 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to search for a target object while navigating in a unknown hallway where some obstacles were placed. In the end of this paper, we presents the results of three algorithms - a random search, area-based action making (ABAM), and hexagonal area-based Q-teaming.

Artificial Intelligence based Threat Assessment Study of Uncertain Ground Targets (불확실 지상 표적의 인공지능 기반 위협도 평가 연구)

  • Jin, Seung-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.305-313
    • /
    • 2021
  • The upcoming warfare will be network-centric warfare with the acquiring and sharing of information on the battlefield through the connection of the entire weapon system. Therefore, the amount of information generated increases, but the technology of evaluating the information is insufficient. Threat assessment is a technology that supports a quick decision, but the information has many uncertainties and is difficult to apply to an advanced battlefield. This paper proposes a threat assessment based on artificial intelligence while removing the target uncertainty. The artificial intelligence system used was a fuzzy inference system and a multi-layer perceptron. The target was classified by inputting the unique characteristics of the target into the fuzzy inference system, and the classified target information was input into the multi-layer perceptron to calculate the appropriate threat value. The validity of the proposed technique was verified with the threat value calculated by inputting the uncertain target to the trained artificial neural network.

Game Optimal Receding Horizon Guidance Laws and Its Equivalence to Receding Horizon Guidance Laws

  • Park, Jae-Weon;Kim, Ki-Baek
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.770-775
    • /
    • 2002
  • In this paper, a game optimal receding horizon guidance law (GRHG) is proposed, which does not use information of the time-to-go and target maneuvers. It is shown that by adjusting design parameters appropriately, the proposed GRHG is identical to the existing receding horizon guidance law (RHG), which can intercept the target by keeping the relative vertical separation less than the given value, within which the warhead of the missile is detonated, after the appropriately selected time in the presence of arbitrary target maneuvers and initial relative vertical separation rates between the target and missile. Through a simulation study, the performance of the GRHG is illustrated and compared with that of the existing optimal guidance law (OGL).

RELIABILITY-BASED DESIGN OPTIMIZATION OF AUTOMOTIVE SUSPENSION SYSTEMS

  • Chun, H.H.;Kwon, S.J.;Tak, T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.713-722
    • /
    • 2007
  • Design variables for suspension systems cannot always be realized in the actual suspension systems due to tolerances in manufacturing and assembly processes. In order to deal with these tolerances, design variables associated with kinematic configuration and compliance characteristics of suspensions are treated as random variables. The reliability of a design target with respect to a design variable is defined as the probability that the design target is in the acceptable design range for all possible values of the design variable. To compute reliability, the limit state, which is the boundary between the acceptable and unacceptable design, is expressed mathematically by a limit state function with value greater than 0 for acceptable design, and less than 0 for unacceptable design. Through reliability analysis, the acceptable range of design variables that satisfy a reliability target is specified. Furthermore, through sensitivity analysis, a general procedure for optimization of the design target with respect to the design variables has been established.

Initial Frequency Preset Technique for Fast Locking Fractional-N PLL Synthesizers

  • Sohn, Jihoon;Shin, Hyunchol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.534-542
    • /
    • 2017
  • This paper presents a fast locking technique for a fractional-N PLL frequency synthesizer. The technique directly measures $K_{VCO}$ on a chip, computes the VCO's target tuning voltage for a given target frequency, and directly sets the loop filter voltage to the target voltage before the PLL begins the normal closed-loop locking process. The closed-loop lock time is significantly minimized because the initial frequency of the VCO are put very close to the desired final target value. The proposed technique is realized and designed for a 4.3-5.3 GHz fractional-N synthesizer in 65 nm CMOS and successfully verified through extensive simulations. The lock time is less than $12.8{\mu}s$ over the entire tuning range. Simulation verifications demonstrate that the proposed method is very effective in reducing the synthesizer lock time.

Comparative Study on Performance of Metaheuristics for Weapon-Target Assignment Problem (무기-표적 할당 문제에 대한 메타휴리스틱의 성능 비교)

  • Choi, Yong Ho;Lee, Young Hoon;Kim, Ji Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.441-453
    • /
    • 2017
  • In this paper, a new type of weapon-target assignment(WTA) problem has been suggested that reflects realistic constraints for sharing target with other weapons and shooting double rapid fire. To utilize in rapidly changing actual battle field, the computation time is of great importance. Several metaheuristic methods such as Simulated Annealing, Tabu Search, Genetic Algorithm, Ant Colony Optimization, and Particle Swarm Optimization have been applied to the real-time WTA in order to find a near optimal solution. A case study with a large number of targets in consideration of the practical cases has been analyzed by the objective value of each algorithm.

JPH Timer Display System for Indicating the Standard Outputs JPH (표준 작업량 지시용 JPH 타이머 Display 시스템)

  • Lee Seong-Cheol;Pang Du-Yeol;Choi Kwang-Hun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.313-314
    • /
    • 2006
  • Indicating product quantity by real time can be benefit both worker and management. Worker can compare real product quantity with its target and can adjust working speed to match with goal. Therefore, so called JPH equipment developed to indicate target quantity of product. As a main processor PIC16F877 was used and FND display were used to indicate current time, elapsed time, JPH value and target amount of product. Values like JPH and starting time, etc. are can easily be set by $4{\times}4$ numeric keypad and display datum likes target amount of product, current time and elapsed time, etc are displayed on FND by RS232 serial transmit. The operation of JPH equipment are tested and verified through long term test and are proved acting properly on working conditions.

  • PDF