• Title/Summary/Keyword: Target Tracking System

Search Result 665, Processing Time 0.029 seconds

EOTS Position Control Using Constant Acceleration and Deceleration Profile (등가감속 프로파일을 이용한 EOTS 위치제어)

  • Yim, Jong-Bin;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Electro Otical Tracking System(EOTS) is required for a rapid movement as well as the stabilization of Line-Of-Sight(LOS). In order to achieve these two goals, this paper presents a position and velocity driving profile generation method from the constant acceleration and deceleration profile according to the current state, enabling a fast and smooth trajectory even if the target position changes during the movement of LOS. Simulation and experimental results reveal that the settling time could be reduced significantly by adopting the present position control scheme.

A Vision-Based Target Tracking Method (영상을 이용한 표적 추적 기법)

  • Kwon, Jung-Hun;Song, Eun-Han;Ha, In-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.219-220
    • /
    • 2007
  • Image plane상에서의 목표의 크기, 시선각 (Line-of-Sight angle) 및 관측자의 상태 정보 등을 이용하여 목표의 상태를 추정한다. 표적 모델을 Linear Time Varying(LTV) system처럼 다룰 수 있음을 밝히고, 이를 이용하여 가관측성(observability)이 성립하는 조건을 구하고 Kalman filter를 이용하여 비선형 추정기를 설계한다. 그리고 등가속도 표적 추정, 미사일의 정지 표적 공격 등의 모의실험에 적용해 본다.

  • PDF

Dividing Occluded Humans Based on an Artificial Neural Network for the Vision of a Surveillance Robot (감시용 로봇의 시각을 위한 인공 신경망 기반 겹친 사람의 구분)

  • Do, Yong-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.505-510
    • /
    • 2009
  • In recent years the space where a robot works has been expanding to the human space unlike traditional industrial robots that work only at fixed positions apart from humans. A human in the recent situation may be the owner of a robot or the target in a robotic application. This paper deals with the latter case; when a robot vision system is employed to monitor humans for a surveillance application, each person in a scene needs to be identified. Humans, however, often move together, and occlusions between them occur frequently. Although this problem has not been seriously tackled in relevant literature, it brings difficulty into later image analysis steps such as tracking and scene understanding. In this paper, a probabilistic neural network is employed to learn the patterns of the best dividing position along the top pixels of an image region of partly occlude people. As this method uses only shape information from an image, it is simple and can be implemented in real time.

Radar Signal Processor Design Using FPGA (FPGA를 이용한 레이더 신호처리 설계)

  • Ha, Changhun;Kwon, Bojun;Lee, Mangyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.482-490
    • /
    • 2017
  • The radar signal processing procedure is divided into the pre-processing such as frequency down converting, down sampling, pulse compression, and etc, and the post-processing such as doppler filtering, extracting target information, detecting, tracking, and etc. The former is generally designed using FPGA because the procedure is relatively simple even though there are large amounts of ADC data to organize very quickly. On the other hand, in general, the latter is parallel processed by multiple DSPs because of complexity, flexibility and real-time processing. This paper presents the radar signal processor design using FPGA which includes not only the pre-processing but also the post-processing such as doppler filtering, bore-sight error, NCI(Non-Coherent Integration), CFAR(Constant False Alarm Rate) and etc.

A study on Online boosting based Multi-target tracking system (Online boosting 기반의 다중객체 추적 시스템 개발)

  • Yang, Ehwa;Yu, Jeongmin;Jeon, Moongu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.364-366
    • /
    • 2012
  • 본 논문은 다중 객체 추적 시스템에 관한 연구로서, Online boosting 을 기반으로 다중 객체 추적 기술이 개발되었다. 기존의 Boosting 기반의 추적 기술과는 다르게 객체들간의 구별을 좀더 명확하게 하기 위하여, 프레임과 프레임간의 객체들끼리의 연결 시 공간적인 제약조건과 시간적 제약 조건을 이용하여 Online Boosting 알고리즘을 설계하였다. 본 시스템에서는 멀리 떨어져있는 객체들간에는 연관성이 낮다는 점을 보다 강력하게 고려하였기에 추적하는 과정에서 물체들끼리의 연관 오류가 줄어들었고, 이는 몇 개의 범용데이터를 이용한 실험을 통해 증명하였다.

Design of Multi-Constellation and Multi-Frequency GNSS SDR with Fully Reconfigurable Functionality

  • Song, Young-Jin;Lee, Hak-beom;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.91-102
    • /
    • 2021
  • In this paper, a fully reconfigurable Software Defined Radio (SDR) for multi-constellation and multi-frequency Global Navigation Satellite System (GNSS) receivers is presented. The reconfigurability with respect to the data structure, variability of signal and receiver parameters, and receiver's internal functionality is presented. The configuration file, that is modified to lead to an entirely different operation of the SDR in response to specific target signal scenarios, directly determines the operating characteristics of the SDR. In this manner, receiver designers can effectively reduce the effort to develop many different combinations of multi-constellation and/or multi-frequency GNSS receivers. Finally, the implementation of the presented fully reconfigurable SDR is included with the experimental processing results such as acquisition, tracking, navigation for the received signals in the realistic fields.

FPGA Design of Adaptive Digital Receiver for Wireless Identification (무선인식을 위한 적응적 디지털 수신기의 FPGA 설계)

  • Seo Young-Ho;Kim Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.745-752
    • /
    • 2005
  • In this paper we propose and implement a digital part of a receiver system for identifying a moving object and its tracking position in wireless environment. We assumed UWB(Ultra Wide Band)-based communication system for target application and used serial communication method(RS-232). The proposed digital receiver consists of RS-232-type1/RS-232-type2 for input and output of serial communication, ID Detector for detecting IDs, and PISO&Buffer circuit to buffer input signals for appropriate operation of ID Detector. We implemented the digital receiver with minimal hardware(H/W) resource according to target application of UWB-based communication system. So it correlates input patterns with pre-stored patterns though repeated detecting method for multiple IDs. Since it has reference panerns in the Ve-stored form, it can detect various IDs instantly. Also we can program content and size of reference patterns considering compatibility with other systems .The implemented H/W was mapped into XC2S100PQ208-5 FPGA of Xilinx, occupied 727($30\%$) cells, and stably operated in the clock frequency of 75MHz(13.341ns).

Cell Image Acquisition and Position Control of the Electron Microbeam System for Individual Cell Irradiation (마이크로 전자빔 개별 세포 조사장치의 세포 영상 획득 및 위치 제어)

  • Park, Seung-Woo;Lee, Dong-Hoon;Hong, Seung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.49-56
    • /
    • 2005
  • An electron microbeam system has been developed to investigate the biological effect of cells by irradiating cell-nuclei with low-energy and low-flux electrons. It is essential to discern the cell nucleus from its cytoplasm and the culture medium and to locateit exactly onto the beam exit. The irradiation speed at more than 10,000 cells per hour is another requisite for the observations on cellular response to have good statistics. Long-time labor with patience and high concentration is needed since the frames of $320{\times}240{\mu}m^2$ should be moved more than 500 times for irradiating more than 10,000 cells per an hour. This paper describes the electron microbeam system with a focus on the user interfaces concerning the process of automatically recognizing the cell nuclei and injecting electron beam into the target cell nuclei at the irradiation speed of more than 10,000 cell nuclei per hour.

2D Spatial-Map Construction for Workers Identification and Avoidance of AGV (AGV의 작업자 식별 및 회피를 위한 2D 공간 지도 구성)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.347-352
    • /
    • 2012
  • In this paper, an 2D spatial-map construction for workers identification and avoidance of AGV using the detection scheme of the spatial coordinates based on stereo camera is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity map obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth map can be detected. From some experiments on AGV driving with 240 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the worker's width is found to be very low value of 2.19% and 1.52% on average.

Measurement of Respiratory Motion Signals for Respiratory Gating Radiation Therapy (호흡동조 방사선치료를 위한 호흡 움직임 신호 측정)

  • Chung, Jin-Beom;Chung, Won-Kyun;Kim, Yon-Lae;Lee, Jeong-Woo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.59-63
    • /
    • 2005
  • Respiration motion causes movement of internal structures in the thorax and abdomen, making accurate delivery of radiation therapy to tumors in those areas a challenge. Accounting for such motion during treatment, therefore, has the potential to reduce margins drawn around the clinical target volume (CTV), resulting in a lower dose to normal tissues (e.g., lung and liver) and thus a lower risk of treatment induced complications. Among the techniques that explicitly account for intrafraction motion are breath-hold, respiration gating, and 4D or tumor-tracking techniques. Respiration gating methods periodically turn the beam on when the patient's respiration signal is in a certain part of the respiratory cycle (generally end-inhale or end-exhale). These techniques require acquisition of some form of respiration motion signal (infrared reflective markers, spirometry, strain gauge, thermistor, video tracking of chest outlines and fluoroscopic tracking of implanted markers are some of the techniques employed to date), which is assumed to be correlated with internal anatomy motion. In preliminary study for the respiratory gating radiation therapy, we performed to measurement of this respiration motion signal. In order to measure the respiratory motion signals of patient, respiration measurement system (RMS) was composed with three sensor (spirometer, thermistor, and belt transducer), 4 channel data acquisition system and mobile computer. For two patients, we performed to evaluation of respiratory cycle and shape with RMS. We observed under this system that respiratory cycle is generally periodic but asymmetric, with the majority of time spent. As expected, RMS traced patient's respiration each other well and be easily handled for application.

  • PDF