Hyperspectral cameras acquire reflectance values at many different wavelength bands. Dimensions tend to increase because spectral information is stored in each pixel. Several attempts have been made to reduce dimensional problems such as the feature selection using Adaboost and dimension reduction using the Simulated Annealing technique. We propose a novel material detection method that consists of four steps: feature band selection, feature extraction, SVM (Support Vector Machine) learning, and target and specific region detection. It is a combination of the band ratio method and Simulated Annealing algorithm based on detection rate. The experimental results validate the effectiveness of the proposed feature selection and band ratio method.
International Journal of Fuzzy Logic and Intelligent Systems
/
제6권4호
/
pp.277-281
/
2006
Cyber counseling, one of the most compatible type of consultation for the information society, enables people to reveal their mental agonies and private problems anonymously, since it does not require face-to-face interview between a counsellor and a client. However, there are few cyber counseling centers which provide high quality and trustworthy service, although the number of cyber counseling center has highly increased. Therefore, this paper is intended to enable an appropriate consultation for each client by analyzing client propensity using Bayesian variable selection. Bayesian variable selection is superior to stepwise regression analysis method in finding out a regression model. Stepwise regression analysis method, which has been generally used to analyze individual propensity in linear regression model, is not efficient since it is hard to select a proper model for its own defects. In this paper, based on the case database of current cyber counseling centers in the web, we will analyze clients' propensities using Bayesian variable selection to enable individually target counseling and to activate cyber counseling programs.
A classification task requires an exponentially growing amount of computation time and number of observations as the variable dimensionality increases. Thus, reducing the dimensionality of the data is essential when the number of observations is limited. Often, dimensionality reduction or feature selection leads to better classification performance than using the whole number of features. In this paper, we study the possibility of utilizing the Markov blanket discovery algorithm as a new feature selection method. The Markov blanket of a target variable is the minimal variable set for explaining the target variable on the basis of conditional independence of all the variables to be connected in a Bayesian network. We apply several Markov blanket discovery algorithms to some high-dimensional categorical and continuous data sets, and compare their classification performance with other feature selection methods using well-known classifiers.
기계번역시스템에서 번역의 우수성은 중의성이 심한 동사의 대역어 선택에 좌우된다. 동사의 의미분별은 함께 어울려 사용되는 연어들에 의해 해소될 수 있지만, 이러한 연어들을 획득하기에는 많은 어려움과 비용의 문제가 발생한다. 이에 따라 기존의 많은 연구 중에서 실용성을 검토해 볼 필요가 있다. 본 논문에서는 영한번역시스템의 성능 향상을 위해 기존에 획득된 연어에 최소한의 명사 의미자질을 구축하여 계산한 의미거리(Semantic Distance)에 의한 실용적인 대역어 선택 방법을 기술하고자 한다.
컴퓨터 모니터에 제시되는 표적의 물리적 특성(표적의 크기, 표적까지의 거리, 표적의 방향, 주변자극들의 조밀도 등)이 입력도구에 따라서 표적의 탐색과 선택반응의 정확성과 반응시간에 미치는 영향을 밝히고자 하였다. 실험 1에서는 단순 표적이 현재의 커서위치로부터 방향과 거리를 달리하여 제시되었을 때 마우스를 이용한 포인팅 반응을 분석하였다. 그 결과, (1) 과대이동(overshooting)의 비율이 정확이동이나 과소이동(undershooting)보다 높았다. (2) 이러한 경향은 상하 혹은 좌우의 정방향보다는 사각방향으로 이동할 때 그리고 표적이 멀리 있을수록 증가하였다. (3) 과대/과소이동의 빈도는 사각에서 현저하였으나, 그 정도는 오히려 정방향에서 더 컸다. (4) 전체 수행과정을 계획, 이동, 조정, 반응수행단계로 구분할 때, 반응시간의 결정요인은 표적까기 마우스를 이동하는 단계였다. 실험 2에서는 실제 단어를 표적으로 사용하여 표적의 방향과 거리뿐만 아니라 표적의 크기와 방해자극들의 조밀도 수준을 체계적으로 변화시켰을 때, 키보드와 마우스에 의한 표적 선택시간을 분석하였다. 표적의 크기로는 한글 96의 글자크기 10, 12, 14를 사용하고, 자극들의 조밀도는 줄간격 100, 150 200%를 사용하였다. 그 결과, (1) 전반적으로는 키보드에 비해 마우스를 이용한 선택 반응시간이 짧았지만 커서를 상하 또는 좌우로만 이동하는 조건에서는 오히려 키보드의 반응시간이 더 짧았다. (3) 줄간격이 조밀하고(100%) 표적의 크기가 작을 때(10) 반응시간이 가장 길었다. (4) 키보드의 경우에는 줄간격 150% 조건에서 반응시간이 가장 짧은 반면, 마우스의 경우에는 줄간격이 커짐에 따라 반응시간이 증가하는 경향이 있었다. 마지막으로, 이 연구의 결과가 시사하는 입력도구의 특성과 표적의 물리적 특성간의 상호 관련성이 시스템의 설계에 어떻게 적용될 수 있는지 논의되었다.=-0.71435*)이었으나, 괴경중 총당 함량과는 정의 상관(r=0.78018*)을 보였다. 이러한 결과는 해충종합방제 프로그램을 확립하고 또한 새로운 내충성 품종의 육성에 기초자료가 될 것으로 생각된다.복현상에 대한 해석이 이루어져야 하겠다. 유의하게 높았으며, 남자노인보다는 여자노인이 식품섭취에 계절에 의한 영향을 더욱 더 많이 받는 것으로 나타났다. 또한 장수 노인들은 가공식품보다는 계절마다 제철에 생산 되는 자연 식품의 섭취비율이 높았다. 전반적으로 장수노인들은 소식의 경향을 보였으며 이 와 같은 소식습관과 신선한 식물성 식품들의 일상 섭취가 건강한 장수에 영향을 미쳤을 가 능성도 있을 것으로 사료된다.며, 지방 조직내 지방축적에 영향을 미친다는 것을 말해 준다.에서 하는 부모교육과 반상회의 홍보자료에 반상회의 홍보자료에 반드시환경친화적 음식소비행동에 관한 교육이 포함되어야 한다. 조리사의 경우 정기교육과정에 환경친화적 음식소비행동에 관한 홍보를 함께 함으로써 외식이나 단체급식에서 발행하는 음식물 쓰레기의 양을 줄 일 수 있을 것이다.m its genes controlling host specificity to its population sturctures and dynamics, have begun to provide new insights into the potential mechanisms underlying race variation. In this review we aim to provide an overview on (a) the molecular basis of host specificity of M. grisea, (b) the population structure and dynamics of rice pathogens, and (c) the nature and mechanisms of genetic changes underpinning virulence
초분광 영상을 이용한 표적 탐지를 수행할 때에는 인접한 분광 밴드의 중복성의 문제 및 고차원 데이터로 인해 발생하는 방대한 계산량의 문제점을 해결하기 위한 특징 추출 과정이 필수적이다. 본 연구는 기계 학습 분야의 특징 선택 기법을 초분광 밴드 선택에 적용하기 위해 $L_{2,1}$-norm regression 모델을 이용한 새로운 밴드 선택 기법을 제안하였으며, 제안한 밴드 선택 기법의 성능 분석을 위해 표적이 존재하는 초분광영상을 직접 촬영하고 이를 바탕으로 표적 탐지를 수행한 결과를 분석하였다. 350 nm~2500 nm 파장 대역에서 밴드 수를 164개에서 약 30~40개로 감소시켰을 때 Adaptive Cosine Estimator(ACE) 탐지 성능이 유지되거나 향상되는 결과를 보였다. 실험 결과를 통해 제안한 밴드 선택 기법이 초분광 영상에서 탐지에 효율적인 밴드를 추출해 내며, 이를 통해 성능의 감소 없이 데이터의 차원 감소를 수행할 수 있어 향후 실시간 표적 탐지 시스템의 처리 속도 향상에 도움을 줄 수 있을 것으로 보인다.
SOA의 출현은 비즈니스 및 IT 환경에 많은 영향을 주었고 학계 및 산업에서 많은 연구가 진행 중이다. 향후 서비스는 폭발적으로 증가할 것이며, 서비스를 컴포지션하여 비즈니스 기회를 창출하고 IT는 이를 지원할 것이다. 그러나 컴포지션의 대상이 되는 서비스를 선정하는 연구는 부족한 실정이다. 본 연구는 서비스 컴포지션 대상을 선정하는 프레임워크를 제안하는 것이며, 선정 방법으로는 Analytic Hierarchy Process 기법을 활용한다. 본 연구의 결과는 서비스 조합시 서비스의 기능/비기능 속성을 반영하고 다양한 이해당사자의 관점과 다수 선정 기준을 적용 하여 서비스 선정을 가능하게 하였다.
Probability-based design codes have been developed to sufficiently confirm the safety level of structures. One of the most acceptable probability-based approaches is Load Resistance Factor Design (LRFD), which measures the safety level of the structures in terms of the reliability index. The main contribution of this paper is to calibrate the load and resistance factors of the design code for tunnels. The load and resistance factors are calculated using the available statistical models and probability-based procedures. The major steps include selection of representative structures, consideration of the limit state functions, calculation of reliability for the selected structures, selection of the target reliability index and calculation of load factors and resistance factors. The load and resistance models are reviewed. Statistical models of resistance (load carrying capacity) are summarized for strength limit state in bending, shear and compression. The reliability indices are calculated for several segments of a selected circular tunnel designed according to the tunnel manual report (Tunnel Manual). The novelty of this paper is the selection of the target reliability. In doing so, the uniform spectrum of reliability indices is proposed based on the probability paper. The final recommendation is proposed based on the closeness to the target reliability index.
The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.
In reality, distribution planning for a supply chain is established using a certain probabilistic distribution estimated by forecasting. However, in general, the demands used for an actual distribution planning are of deterministic value, a single value for each of periods. Because of this reason the final result of a planning has to be a single value for each period. Unfortunately, it is very difficult to estimate a single value due to the inherent uncertainty in the probabilistic distribution of customer demand. The issue addressed in this paper is the selection of single demand value among of the distributed demand estimations for a period to be used in the distribution planning. This paper proposes an efficient demand selection scheme for minimizing total inventory costs while satisfying target service level under the various experimental conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.