• Title/Summary/Keyword: Tardiness

Search Result 146, Processing Time 0.026 seconds

Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine Overlapping Sequence-dependent Setup Times

  • Mongkalig, Chatpon;Tabucanon, Mario T.;Hop, Nguyen Van
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2005
  • This paper presents new scheduling heuristics, namely Mean Progressive Weighted Tardiness Estimator (MPWT) Heuristic Method and modified priority rules with sequence-dependent setup times consideration. These are designed to solve job shop scheduling problems with new performance measures - progressive weighted tardiness penalties. More realistic constraints, which are inter-machine overlapping sequence-dependent setup times, are considered. In real production environments, inter-machine overlapping sequence-dependent setups are significant. Therefore, modified scheduling generation algorithms of active and nondelay schedules for job shop problems with inter-machine overlapping sequence-dependent setup times are proposed in this paper. In addition, new customer-based measures of performance, which are total earliness and progressive weighted tardiness, and total progressive weighted tardiness, are proposed. The objective of the first experiment is to compare the proposed priority rules with the consideration of sequence-dependent setup times and the standard priority rules without setup times consideration. The results indicate that the proposed priority rules with setup times consideration are superior to the standard priority rules without the consideration of setup times. From the second experiment and the third experiment to compare the proposed MPWT heuristic approach with the efficient priority rules with setup times consideration, the MPWT heuristic method is significantly superior to the Batched Apparent Tardiness Cost with Sequence-dependent Setups (BATCS) rule, and other priority rules based on total earliness and progressive weighted tardiness, and total earliness and tardiness.

An Algorithm for Resource-Unconstrained Earliness-Tardiness Problem with Partial Precedences (자원 제약이 없는 환경에서 부분 우선순위를 고려한 Earliness-Tardiness 최적 일정계획 알고리즘)

  • Ha, Byung-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.2
    • /
    • pp.141-157
    • /
    • 2013
  • In this paper, we consider the minimization of the total weighted earliness-tardiness penalty of jobs, regarding the partial precedences between jobs. We present an optimal scheduling algorithm in O(n(n+m log m)) where n is the number of jobs and m is the number of partial precedences. In the algorithm, the optimal schedule is constructed iteratively by considering each group of contiguous jobs as a block that is represented by a tree.

Job-Pair Tardiness Dispatching Rule for Minimize Total Tardiness (납기지연 최소화를 위한 작업상 비교할당규칙)

  • 전태준;박성호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.216-219
    • /
    • 1998
  • This study proposes JPT(Job-Pair Tardiness) that choose operation to be expected to generate better schedule consequence in comparing schedulable operation sets in pair to minimize total tardiness evaluation function in performing scheduling. In result of comparison with existing assignment rules. JPT generates better solution than most other rules in all kinds of problems. So it is anticipated that this is used for initial solution of heuristic and is used for finding more improved solution.

  • PDF

A Study of Job Shop Scheduling for Minimizing Tardiness with Alternative Machines (대체기계가 존재하는 Job Shop 일정계획 환경에서 납기지연을 최소화하는 방법에 관한 연구)

  • Kim, Ki-Dong;Kim, Jae-Hong
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.51-61
    • /
    • 2008
  • In these days, domestic manufacturers are faced with managerial difficulties such as the increasing competition in their industry and the increasing power of customers. In this situation, they have to satisfy their customers with high quality of their products and meeting due date of their orders. Production of the order within due date is an important factor for improving enterprise competitiveness. The causes of occurrence of tardiness may be wrong product scheduling, unexpected events in field and so on, a way to minimize tardiness is use of alternative machines, overwork, outsourcing and etc.. In this study, we deal with a scheduling problem that can minimize tardiness using alternative machines. This paper provides a mathematical program and a heuristic method for job shop scheduling for minimizing tardiness with alternative machines. And a proposed heuristic method is verified comparing with optimal solution obtained by ILOG CPLEX.

  • PDF

An Efficient Heuristic Technique for Job Shop Scheduling with Due Dates (납기를 갖는 job shop 일정계획의 효율적인 발견적기법)

  • 배상윤;김여근
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.3
    • /
    • pp.75-88
    • /
    • 1996
  • This paper presents an efficient heuristic technique for minimizing the objectives related to tardiness such as total tardiness, maximum tardiness and root mean of tardiness in the job shop scheduling. The heuristic technique iteratively improves an active schedule through exploring the schedule's neighborrhood, using operation move methods. The move operatio is defined on an active chain of tardy jobs in the active schedule. To find the move operations which have a high probability of reducing tardiness, we develop move methods by exploiting the properties of active chains. Our technique is compared with the two existing heuristic techniques, that is, MEHA(Modified Exchange Heuristic Algorithm) and GSP(Global Scheduling Procedure) under the various environmental with the three levels of due date tightness and several sized problems. The experimental results show that the proposed technique outperforms the two exissting techiques in terms of solution quality and computation time.

  • PDF

A heuristic m-machine flowshop scheduling method under the total tardiness criterion (Total Tardiness 기준하(基準下)에서의 m- machine Flowshop Scheduling을 위한 발견적(發見的) 기법(技法)에 관한 연구(硏究))

  • Choi, Yong-Sun;Lee, Seong-Soo;Kim, Soung-Hie
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.1
    • /
    • pp.91-104
    • /
    • 1992
  • Flowshop scheduling problem is known to be NP-complete. Since the optimization apporach like branch-and-bound is limited by exponentially growing computation time, many heuristic methods have been developed. Total tardiness is one of the criteria that the researchers have recently considered in flowshop scheduling. There, however, are few literatures which studied the general (m machine)-flowshop scheduling under the total tardiness criterion. In this paper, a heuristic scheduling method to minimize total tardiness at the (m machine, n job)-flowshop is presented. A heuristic value function is proposed to be used as a dispatching criterion in initial schedule generation. And the schedule improving procedure, by pairwise interchange of tardy job with the job right ahead of it, is introduced. Illustrative examles and simulated results are presented.

  • PDF

Dispatching Rule based Job-Shop Scheduling Algorithm with Delay Schedule for Minimizing Total Tardiness (지연 스케쥴을 허용하는 납기최소화 잡샵 스케쥴링 알고리즘)

  • Kim, Jae-Gon;Bang, June-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • This study focuses on a job-shop scheduling problem with the objective of minimizing total tardiness for the job orders that have different due dates and different process flows. We suggest the dispatching rule based scheduling algorithm to generate fast and efficient schedule. First, we show the delay schedule can be optimal for total tardiness measure in some cases. Based on this observation, we expand search space for selecting the job operation to explore the delay schedules. That means, not only all job operations waiting for process but also job operations not arrived at the machine yet are considered to be scheduled when a machine is available and it is need decision for the next operation to be processed. Assuming each job operation is assigned to the available machine, the expected total tardiness is estimated, and the job operation with the minimum expected total tardiness is selected to be processed in the machine. If this job is being processed in the other machine, then machine should wait until the job arrives at the machine. Simulation experiments are carried out to test the suggested algorithm and compare with the results of other well-known dispatching rules such as EDD, ATC and COVERT, etc. Results show that the proposed algorithm, MET, works better in terms of total tardiness of orders than existing rules without increasing the number of tardy jobs.

Scheduling Orders for Minimizing Total Weighted Tardiness (가중납기지연시간을 고려한 최적 주문처리순서에 관한 연구)

  • Lee, Ik-Sun;Yoon, Sang-Hum
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.87-101
    • /
    • 2008
  • This paper considers an order scheduling model to minimize the total weighted tardiness of orders. Each order requires different types of products. Each type of product is manufactured on its dedicated machine specified in advance. The completion time of each order is represented by the time when all the products belonging to the order are completed. The objective of this paper is to find the optimal production schedule minimizing the total weighted tardiness of a finite number of orders. In the problem analysis, we first derive a powerful solution property to determine the sequence of two consecutive orders. Moreover, two lower bounds of objective are derived and tested along with the derived property within a branch-and-bound scheme. Two efficient heuristic algorithms are also developed. The overall performances of the proposed property, branch-and-bound and heuristic algorithms are evaluated through various numerical experiments.

Dynamic Production Scheduling for JIT Delivery in a Welding Shop Adopting Batch-Production (뱃치생산을 하는 용접작업장에서 JIT 납품을 위한 동적생산일정계획)

  • Moon, Dug-Hee
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.57-67
    • /
    • 1997
  • This paper is a report of a simulation study that investigates a dynamic approach to scheduling jobs in a conventional shop floor, especially in an assemoly-type welding process. We consider both JIT arrival and JIT delivery. Various dispatching rules are tested for the following performance measures; mean flow time, rate of tardy jobs, mean tardiness, sum of mean tardiness and mean earliness. The results indicate that SPT rule is the best for the mean flow time. MSLACK that we suggest in this paper, is the best for the mean tardiness and the sum of mean tardiness and mean earliness. However, it is not clear that which rule is the best for the rate of tardy jobs.

  • PDF

최대 지연시간을 고려한 Earliness/Tardiness 모델에서의 스케쥴링

  • 서종화;이동훈;김채복
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.295-298
    • /
    • 1996
  • We consider a nonpreemptive single-machine scheduling problem to minimize the mean squared deviation(MSD) of job completion times about a common due date d with a maximum tardiness constraint, i.e., maximum tardiness is less than or equal to the given allowable amount, .DELTA.(MSD/T$_{max}$ problem). We classify the .DELTA.-unconstrained cases in the MSD/T$_{max}$ problem. We provide bounds to discern each case for the problem. It is also shown that the .DELTA.-unconstrained MSD/T$_{max}$ problem is equivalent to the unconstrained MSD problem and the tightly .DELTA.-constrained MSD/T$_{max}$ problem with n jobs and a maximum allowable tardiness .DELTA. can be converted into the constrained MSD problem with a common due date .DELTA. and n-1 jobs. Finally, the solution procedure for MSD/T$_{max}$ problem is provided. provided.

  • PDF