• Title/Summary/Keyword: Tapping task

Search Result 16, Processing Time 0.017 seconds

Effect of Transcranial Direct Current Stimulation on Movement Variability in Repetitive - Simple Tapping Task

  • Kwon, Yong Hyun;Cho, Jeong Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Purpose: Accuracy and variability of movement in daily life require synchronization of muscular activities through a specific chronological order of motor performance, which is controlled by higher neural substrates and/or lower motor centers. We attempted to investigate whether transcranial direct current stimulation (tDCS) over primary sensorimotor areas (SM1) could influence movement variability in healthy subjects, using a tapping task. Methods: Twenty six right-handed healthy subjects with no neurological or psychiatric disorders participated in this study. They were randomly and equally assigned to the real tDCS group or sham control group. Direct current with intensity of 1 mA was delivered over their right SM1 for 15 minutes. For estimation of movement variability before and after tDCS, tapping task was measured, and variability was calculated as standard deviation of the inter-tap interval (SD-ITI). Results: At the baseline test, there was no significant difference in SD-ITI between the two groups. In two-way ANOVA with repeated measurement no significant differences were found in a large main effect of group and interaction effect between two main factors (i.e., group factor and time factor (pre-post test)). However, significant findings were observed in a large main effect of the pre-post test. Conclusion: Our findings showed that the anodal tDCS over SM1 for 15 minutes with intensity of 1 mA could enhance consistency of motor execution in a repetitive-simple tapping task. We suggest that tDCS has potential as an adjuvant brain facilitator for improving rhythm and consistency of movement in healthy individuals.

Low Frequency Fluctuation Component Analysis in Active Stimulation fMRI Paradigm (활성자극 파라다임 fMRI에서 저주파요동 성분분석)

  • Na, Sung-Min;Park, Hyun-Jung;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Purpose : To separate and evaluate the low frequency spontaneous fluctuation BOLD signals from the functional magnetic resonance imaging data using sensorimotor active task. Materials and Methods : Twenty female archery players and twenty three control subjects were included in this study. Finger-tapping task consisted of three cycles of right finger tapping, with a subsequent 30 second rest. Blood oxygenation level-dependent (BOLD) data were collected using $T2^*$-weighted echo planar imaging at a 3.0 T scanner. A 3-D FSPGR T1-weighted images were used for structural reference. Image processing and statistical analyses were performed using SPM5 for active finger-tapping task and GIFT program was used for statistical analyses of low frequency spontaneous fluctuation BOLD signal. Results : Both groups showed the activation in the left primary motor cortex and supplemental motor area and in the right cerebellum for right finger-tapping task. ICA analysis using GIFT revealed independent components corresponding to contralateral and ipsilateral sensorimotor network and cognitive-related neural network. Conclusion : The current study demonstrated that the low frequency spontaneous fluctuation BOLD signals can be separated from the fMRI data using finger tapping paradigm. Also, it was found that these independent components correspond to spontaneous and coherent neural activity in the primary sensorimotor network and in the motor-cognitive network.

Fitts' Law for Angular Foot Movement in the Foot Tapping Task

  • Park, Jae-Eun;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.647-655
    • /
    • 2012
  • Objective: The purpose of this study was to confirm difference between angular foot movement time and existing foot Fitts' law predicting times, and to develop the angular foot Fitts' law in the foot tapping task. Background: Existing studies of foot Fitts' law focused on horizontal movement to predict the movement time. However, when driving a car, humans move their foot from the accelerator to the brake with a fixed heel. Therefore, we examined the experiment to measure angular foot movement time in reciprocal foot tapping task and compared to conventional foot Fitts' law predicting time. And, we developed the angular foot Fitts' law. Method: In this study, we compared the angular foot movement time in foot tapping task and the predicted time of four conventional linear foot Fitts' law models - Drury's foot Fitts' law, Drury's ballistic, Hoffmann's ballistic, Hoffmann's visually-controlled. 11 subjects participated in this experiment to get a movement time and three target degrees of 20, 40, and 60 were used. And, conventional models were calculated for the prediction time. To analyze the movement time, linear and arc distance between targets were used for variables of model. Finally, the angular foot Fitts' law was developed from experimental data. Results: The average movement times for each experiment were 412.2ms, 474.9ms, and 526.6ms for the 89mm, 172mm, and 253mm linear distance conditions. The results also showed significant differences in performance time between different angle level. However, all of conventional linear foot Fitts' laws ranged 135.6ms to 401.2ms. On the other hand, the angular foot Fitts' law predicted the angular movement time well. Conclusion: Conventional linear foot Fitts' laws were underestimated and have a limitation to predict the foot movement time in the real task related angular foot movement. Application: This study is useful when considering the human behavior of angular foot movement such as driving or foot input device.

Rhythmic Tapping Task Performance in Children With Autism Spectrum Disorder: A Meta-Analysis (자폐스펙트럼장애 아동 대상 리드믹 운동과제 평가 연구 메타분석)

  • Yoo, Ga Eul;Yoon, Ye Eun
    • Journal of Music and Human Behavior
    • /
    • v.16 no.1
    • /
    • pp.47-72
    • /
    • 2019
  • This study reviewed and analyzed English-written studies using a rhythmic tapping task for motor control of children with autism spectrum disorder (ASD). Inclusion criteria for the participants were children with ASD and typically developing (TD) children. The keywords used for the outcome variables included rhythmic tapping, timed movement, and synchronization. Ten studies were included in the final analysis. The included studies were analyzed in terms of target variables, auditory stimuli, and measurements. A meta-analysis was also conducted to examine how children with ASD performed rhythmic tapping tasks compared to children with TD. In the identified studies, five variables were used: timed movement control, timing reproduction, bimanual coordination, synchronization, and interpersonal synchronization. It was found that rhythmic tapping performance was analyzed in terms of accuracy and precision of the movement and reported as significantly correlated to social skills measures. The meta-analysis results showed that there were no significant differences between the ASD and TD groups in continuing rhythmic movements when the presented auditory stimuli ended, whereas there were significant group differences in their ability to maintain their motor performance consistently and to synchronize with auditory cue or with others. These results support the rhythmic tapping task as an effective measure for not only motor control but also social skills development in children with ASD.

Evaluation of Concentration using Electroencephalogram and Electrocardiogram (I) (뇌파와 심박변화를 이용한 집중도의 평가 (I))

  • 윤용현;고한우;양희경;김동윤
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.6-9
    • /
    • 2001
  • 집중도를 평가하기 위하여 피험자에게 집중을 유발시키는 3가지 task(단기기억작업, Corsi block tapping task, visuomotor task)를 부가하고 주관평가 및 생리신호(뇌파, 심전도, 맥파, 피부온도, 호흡, 피부전도도)를 측정하였다. 뇌파를 mapping하여 평가에 적합한 전극이 위치를 선정하고, task 수행중 집중도 변화와 짐전도의 심박변화와의 관계를 분석하였다. 분석결과 안정과 task 수행시 뇌파 mapping상 전체 power의 변호가 frontal 부분에서 크게 나타났으며, 집중시 R-R 간격의 순간간격변화가 줄어들었다.

  • PDF

Correlation Between Rhythm Reproduction Task Performance and Cognitive Function in School-Aged Children (초등학생의 리듬 재산출 능력과 인지기능 수준 간 상관관계)

  • Oh, So-young;Chong, Hyun Ju
    • Journal of Music and Human Behavior
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • This study examined the correlation between the rhythm reproduction performance and cognitive function of school-aged children. A total of 59 third grade elementary students participated in this study. An iPad-based rhythm reproduction task, the Digit Span Test (DST), the Children's Color Trails Test (CCTT), and a self-paced tapping task via a MIDI keyboard were conducted for each participant. The results demonstrated that scores at each stage of the iPad-based rhythm reproduction test showed different patterns of correlation with cognitive function test scores. This result suggests that accuracy of a simple rhythm task is correlated to speed of self-paced tapping (second). Also cognitive function may affect rhythm grouping ability. Results of this analysis for each of 20 rhythm items showed that there was a common rhythm characteristics that correlated with executive function, working memory or self-paced tapping speed. These results indicate that rhythm ability is related to, and predictive of, the level of cognitive functioning in elementary school students and can be used as an useful parameter when examining cognitive function of school-aged children in multifaceted dimensions.

The Feasibility of Event-Related Functional Magnetic Resonance Imaging of Power Hand Grip Task for Studying the Motor System in Normal Volunteers; Comparison with Finger Tapping Task

  • Song, In-Chan;Chang, Kee-Hyun;Han, Moon-Hee
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.111-111
    • /
    • 2001
  • 목적: To evaluate the feasibility of the event-related functional MR study using power grip studying the hand motor system 대상 및 방법: Event-related functional MRI was performed on a 1.5T MR unit in seven norm volunteers (man=7, right-handedness=2, left-handedness=5, mean age: 25 years). A single-shot GRE-EPI sequence (TR/TE/flip angle: 1000ms/40ms/90, FOV = 240 mm matrix= 64$\times$64, slice thickness/gap = 5mm/0mm, 7 true axial slices) was used for functiona MR images. A flow-sensitive conventional gradient echo sequence (TR/TE/flip angl 50ms/4ms/60) was used for high-resolution anatomical images. To minimize the gross hea motion, neck-holders (MJ-200, USA) were used. A series of MR images were obtained in axial planes covering motor areas. To exclude motion-corrupted images, all MR images wer surveyed in a movie procedure and evaluated using the estimation of center of mass of ima signal intensities. Power grip task consisted of the powerful grip of all right fingers and hand movement ta used very fast right finger tapping at a speed of 3 per 1 second. All tasks were visual-guid by LCD projector (SHARP, Japan). Two tasks consisted of 134 phases including 7 activatio and 8 rest periods. Active stimulations were performed during 2 seconds and rest period were 15 seconds and total scan time per one task was 2 min 14 sec. Statistical maps we obtained using cross-correlation method. Reference vector was time-shifted by 4 seconds an Gaussian convolution with a FWHM of 4 seconds was applied to it. The threshold in p val for the activation sites was set to be 0.001. All mapping procedures were peformed usin homemade program an IDL (Research Systems Inc., USA) platform. We evaluated the activation patterns of the motor system of power grip compared to hand movement in t event-related functional MRI.

  • PDF

Ipsilateral Motor Deficit during Three Different Specific Task Following Unilateral Brain Damage (편측 뇌손상 환자에서 특정 과제에 한정된 동측 상지의 운동 결함 분석)

  • Kwon, Yong-Hyun;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.2
    • /
    • pp.67-87
    • /
    • 2005
  • Impaired sensorimotor function of the hand ipsilateral to a unilateral brain damage has been reported in a variety of motor task. however, it is still the controversial issue because of the difficulty of detection in clinical situation, patients' variability(time after onset, contralateral upper extremity severity, other cognitive functions including apraxia), and the performed various motor task. The purpose of this study is to determine the presence of ipsilateral motor deficit following unilateral brain damage in three different specific tasks(hand tapping, visual tracking and coin rotation) compared with healthy age-sex matched control group using the same hand and to investigate the lateralized motor control in each hemispheric function. Findings revealed that stroke patients with unilateral brain damage experienced difficulties with rapid-simple repetitive movement, visuomotor coordination, complex sequencing movement on ipsilateral side. Also, Comparison of the left-hemispheric stroke groups and the right-hemispheric stroke groups revealed that patients with a left-hemisphere damage tended to be more variable in performing all of the three tasks. These results show that stroke patient with left hemisphere damage has more ipsilateral motor deficit, and the left hemisphere contributes to the processing of motor control that necessary for the executing actions with ipsilateral hand.

  • PDF

Functional Magnetic Resonance Imaging with Arterial Spin Labeling: Techniques and Potential Clinical and Research Applications

  • Kim, Ju Ho;Choi, Dae Seob;Park, Sung Eun;Choi, Ho Cheol;Kim, Seong Hu
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.91-96
    • /
    • 2017
  • Purpose: To describe technical methods for functional magnetic resonance imaging (fMRI) study with arterial spin labeling (ASL) compared to blood oxygenation level-dependent (BOLD) technique and discuss the potential of ASL for research and clinical practice. Materials and Methods: Task-based (n = 1) and resting-state fMRI (rs-fMRI) (n = 20) were performed using ASL and BOLD techniques. Results of both techniques were compared. Results: For task-based fMRI with finger-tapping, the primary motor cortex of the contralateral frontal lobe and the ipsilateral cerebellum were activated by both BOLD and ASL fMRI. For rs-fMRI of sensorimotor network, functional connectivity showed similar results between BOLD and ASL. Conclusion: ASL technique has potential application in clinical and research fields because all brain perfusion imaging, CBF measurement, and rs-fMRI study can be performed in a single acquisition.

Ipsilateral Motor Deficit in Patients with Unilateral Brain Damage (편측 뇌손상 환자의 동측 운동 결함에 대한 고찰)

  • Kim, Chung-Sun;Kim, Kyung;Kwon, Yong-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • Recently, several investigations revealed that after unilateral brain damage, movement abnormalities were exposed on the ipsilateral side as well as the upper extremity contralateral to the damaged hemisphere. Even the motor abilities had significantly recovered from ipsilateral motor deficits on not only simple sensoriomotor function, also clinical assessments since subacute stage, although could not completely returned. Such motor deficits were detected in a diversity of motor tasks depending on the interhemispheric specialization, further in clinical evaluation and a daily of activities. In the clinical features, muscular weakness, sensory loss and impaired manual dexterity were observed. In a laboratory experiment, there were increasing evidences that the kinematic processing deficits was founded in various-specific motor tasks, which ranged from simple basic element to complex tasks, such as tapping task, step-tracking, goal directional aiming task, and iso(and non-)directional interlimb coordination. In the point of view, the manifest understanding in related to ipsilateral deficits provide the clinicians with an important information for scientific management about brain injured patient's prognosis and therapeutic guidelines.

  • PDF