• 제목/요약/키워드: Tank Room

Search Result 135, Processing Time 0.033 seconds

Radiological safety analysis of a newly designed spent resin mixture treatment facility during normal and abnormal operational scenarios for the safety of radiation workers

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1935-1945
    • /
    • 2023
  • The radiological safety of workers in a newly developed microwave-based spent resin treatment facility was assessed based on work location and operational scenarios. The results show that the remote-operation room worker was exposed to maximum annual dose of 3.19E+00 mSv, which is 15.9% of the dose limit, thereby confirming radiological safety. Inside the pathway, annual doses in the range of 7.87E-02-2.07E-01 mSv were measured initially at the mock-up tank and later at the point between the spent resin separation and treatment parts. The dose of emergency maintenance workers was below the dose limit (4.08E-03-4.99E+00 mSv); however, before treatment (separation and microwave), the dose of maintenance and repair workers exceeded the dose limit. The doses of the effluent removal workers at the zeolite and activated carbon storage tank and spent resin storage tank were the lowest at 2.79E-01-2.87E-01 mSv and 9.27E-01 mSv in "1 h" and "4-5 h of operation", respectively. The immediately lower and upper layers of the facility room exhibited the highest annual doses of 1.84E+00 and 3.22E+00 mSv, respectively. Through this study, a scenario that can minimize the dose considering the movement of spent resin through the facility can be developed.

Evaluation of Permeability Performance by Cryogenic Thermal Shock in Composite Propellant Tank for Space Launch Vehicles (우주 발사체용 복합재 산화제 탱크 구조물의 극저온 열충격에 따른 투과도 성능 평가)

  • Kim, Jung-Myung;Hong, Seung-Chul;Choi, Soo-Young;Jeong, Sang-Won;Ahn, Hyon-Su
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.309-314
    • /
    • 2020
  • Polymer composites were used to reduce the weight of the spacecraft's cryogenic propellant tank. Since these materials were directional, the permeability performance of the gas permeated or delivered in the stacking direction was an indicator directly related to performance such as tank stability and onboard fuel quantity estimation. In addition, the results of permeation measurements and optical analysis of the surface to verify the effect of the number of cycles exposed to the cryogenic-room temperature environment are included. As a result, the permeability was inversely proportional to the thickness and was proportional to the number of thermal shocks, and it was verified that the permeability performance was suitable for the cryogenic propellant tank material for the space launch vehicle.

Response of Gray Rock Cod to the Colored Lights (색광에 대한 볼낙의 반응)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.330-334
    • /
    • 1983
  • The author carried out an experiment to find out the response of gray rock cod, Sebastes inermis (Cuvier et Valenciennes) to the color light. The experimental tank ($360L{\times}50W{\times}55H\;cm$) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of white, blue, yellow and red. The gathering rate of fish on illumination period was small and comparatively fluctuated with stability. The difference of the gathering rates on two different colors of light was much greater, regardless of illumination period, in day time than in night time.

  • PDF

Response of Rockfish to the Colored Lights (색광에 대한 조피볼낙의 반응)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.119-123
    • /
    • 1985
  • The author carried out an experiment to find out the response of rockfish, Sebastes schlegeli(Hilgendorf) to the color lights. The experimental tank($360L{\times}50W{\times}55H\;cm$) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20 W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of blue, white, yellow and red in day time, and yellow, blue, white and red at night time. The gathering rate of fish on illumination period was not constant and fluctuated with irregularity. The difference of the gathering rate on two different colors of light was great and the difference was larger in day time than in night time.

  • PDF

Response of Filefish to the Colored Lights (색광에 대한 말쥐치의 반응)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.191-196
    • /
    • 1984
  • The author carried out an experiment to find out the response of filefish, Navodon modestus(Gunther) to the colored lights. The experimental tank($360L{\times}50W{\times}55Hcm$) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before thor were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of blue, white, yellow and red. The gathering rate of fish on illumination period was not constant but varied randomly. The difference of the gathering rates on two different colors of light was rather in significant, however the difference was larger in the day time than in the night time.

  • PDF

Selective Response of Rock bream and Sea bass to the Color Nettings (색강지에 대한 돌돔과 능성어의 선택반응)

  • An, Heui-Chun;Yang, Yong-Rhim
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.35-40
    • /
    • 1985
  • The author carried out experiments to find out the response of rock bream, Oplegnathus fasciatus (TEMMINCK et SCHLEGEL) and sea bass, Epinephelus septemfasciatus (THUNBERG) to the color nettings. The experimental water tank(180L$\times$50W$\times$55Hcm) was set up n a dark room and water level was maintained 50cm high from the bottom. The tank was devided three longitudinal sections marking 60 cm interval. The illumination systems, consisted of 20 watt fluorescent lamps and filter, were suspended adove the tank. Two different color nettings selected from five colors (red, yellow, green, blue, black) were placed in each end section of the tank. Ten fish were used in each experiment and the fish were acclimatized in the dark for 60 minutes before experiment. After the light on, the number of fish in each section of the tank was counted in every 30 seconds interval for 30 minutes. The results obtained are as follows: 1. The rock bream selected the color nettings in the order of yellow, black, blue, green and red. 2. The sea bass selected the color nettings in the order of green, black, red, blue and yellow.

  • PDF

Response of Striped Puffer , Fugu xanthopterus to the Colored Lights (색광에 대한 까치복의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.2
    • /
    • pp.78-85
    • /
    • 1994
  • The author carried out an experiment to find out the response of Striped puffer. Fugu xanthoperus (Temminck et Schlegel) to the color lights. The experimental tank (300L$\times$50W$\times$50Hcm) was set up in a dark room. Six longitudinal sections with 60cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and the were placed in front of the light bulbs to make different colors of light. Light intensity was controlled by use of auxiliary filiters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 60 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in order of blue, yellow, white and red in the daytime, and blue, white, yellow and red at night. The difference of the average distribution on two different colors of light was 13.12%(4.10-26.55%), and the difference in the daytime(14.79%) was larger than at night (11.45%). Constantly the gathering rate of fish on illumination period was fluctuated with instability. As the gathering rate of fish on illumination period was fluctuated with instability. As the gathering rate on one color of light increased, the gathering rate on the other color of light decreased. The difference of the gathering rate on two different colors of light was comparatively distinct and the difference in the daytime was larger than at night.

  • PDF

Response of Rock Trout to the Colored Lights (색광에 대한 쥐노래미의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.6-10
    • /
    • 1984
  • The author carried out an experiment to find out the response of rock trout, Hexagrammos otakii (Jordan et starks) to the color lights. The experimental tank (360L$\times$50W$\times$55H cm) was set up in a dark room. Six longitudinal sections with 60cm intervals are marked in the tank to observe the loction of the fish. Water depth in the tank was kept 50cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were 3employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of white, yellow, red and blue in day time, and red, yellow, blue and white at night time. The gathering rate of fish on illumination period was small and comparatively fluctuated with stability. The difference of the gathering rates on two different colors of light was great.

  • PDF

Demonstration study on Heating and Hot water According to Control Condition of Solar System (태양열 시스템의 제어조건에 따른 난방 및 급탕 실증연구)

  • Kwak, Hee-Youl;Kim, Jeong-Bae;Joo, Hong-Jin;Kim, Jong-Bo
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.119-126
    • /
    • 2006
  • This study describes thermal performance of heating and cooling demonstration system using ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about $350m^2$ was heated and cooled using that system. The demonstration system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, and subsidiary tank. From January to March in 2006, demonstration test were performed with 4 control mode to find the optimum control condition for solar thermal system. After experiments and analysis, this study found that solar thermal system of control mode IV was corresponded to 78% for the hot water supply and 49% for space heating.

Rupture Safety Assesment of Bipropellant Propulsion System at High Pressure Testing (이원 추진 시스템 고압 시험시의 파열 안전성 고찰)

  • Chang, Se-Myong;Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.605-611
    • /
    • 2010
  • The geostationary satellite COMS is going to be launched in 2010, and, in the series of test, there are some high-pressure tests concerning the vessel tank filled with helium gas of hundreds atmospheric pressure. In this paper, authors evaluates risk associated with accidental rupture of the test system. Two possible scenarios are considered: 1) the 310-bar helium tank ruptures at the center of the acoustic chamber, and 2) the 116-bar reduced-pressure helium tank ruptures in the test room shielded by bullet-proof glasses. Using the theory of blast wave propagation and computational simulation, the dynamics of wave reflected in a confined space is investigated for highly complex unsteady flow physics.