Oh Young Taek;Keum Ki Chang;Chu Seong Sil;Kim Gwi Eon
Radiation Oncology Journal
/
v.14
no.4
/
pp.323-332
/
1996
Purpose : The wedge filter is the most commonly used beam modifying device during radiation therapy Recently dynamic wedge technique is available through the computer controlled asymmetric collimator, independent jaw. But dosimetric characteristics of dynamic wedge technique is not well known. Therefore we evaluate dosimetric characteristics of dynamic wedge compared to conventional fixed wedge. Materials and Methods : We evaluated dosimetric characteristics of dynamic wedge and fixed wedge by ion chamber, film dosimetry and TLD in phantoms such as water, polystyrene and average breast phantom. Six MV x-ray was used in $15{\times}15cm$ field with 15,30 and 45 degree wedge of dynamic/liked wedge system, Dosimeric characteristics are interpreted by Wellhofer Dosimetrie system WP700/WP700i and contralateral breast dose (CBD) with tangential technique was confirmed by TLD. Results : 1) Percent depth dose through the dynamic wedge technique in tissue equivalent phantom was similar to open field irradiation and there was no beam hardening effect compared to fixed wedge technique. 2) Isodose line composing wedge angle of dynamic wedge is more straight than hard wedge. And dynamic wedge technique was able to make any wedge angle on any depth and field size. 3) The contralateral breast dose in primary breast irradiation was reduced by dynamic wedge technique compared to fixed wedge. When the dynamic wedge technique was applied, the scatter dose was similar to that of open field irradiation. Conclusion : The dynamic wedge technique was superior to fixed wedge technique in dosimetric characteristics and may be more useful in the future.
The purpose of this study is to evaluate the dosimetric outcome of the field-in-field (FIF) plans compared with tangential wedged beams (TWB) plans for whole breast irradiation of breast cancer patients. Twenty patients with right-sided breast cancer and 10 patients with left-sided breast cancer were retrospectively enrolled in this study. We generated a FIF plan and a TWB plan for each patient to compare dosimetric outcomes. The dose the homogeneity index (HI), the conformity index (CI) and the uniformity index (UI) were defined and used for comparison of the dosimetric outcome of the planning target volume (PTV). To compare the dosimetric outcome of the organs at risk, the mean dose ($D_{mean}$) and the percentage of volumes receiving more than 10, 20 and 30 Gy of the ipsilateral lung and heart were used. The FIF plans had significantly lower HI (p=0.002), higher UI (p=0.000) and CI (p=0.000) than those of the TWB plans, which means that the FIF plans were better than the TWB plans in the dosimetric comparisons of the PTV. The $V10_{lung}$ ($17.1{\pm}7.1$ vs. $18.6{\pm}6.6%$, p=0.020) and $V30_{lung}$ ($10.3{\pm}5.1%$ vs. $10.7{\pm}5.2%$, p=0.000) were lower with the FIF plans compared with those of the TWB plans, with statistical significance. For the left-sided breast cancer patients, $D_{mean}$ of the heart ($2.6{\pm}1.3$ vs. $3.2{\pm}1.4$ Gy, p=0.000), $V20_{heart}$ ($3.4{\pm}2.6$ vs. $3.6{\pm}2.8%$, p=0.005) and $V30_{heart}$ ($2.6{\pm}2.3%$ vs. $2.9{\pm}2.4%$, p=0.004) were significantly lower for the FIF plans in comparison with those of the TWB plans. The FIF plans increased the dose homogeneity, conformity and uniformity of the target volume for the whole-breast irradiation compared with the TWB plans. Moreover, FIF plans reduced the doses to the ipsilateral lung and heart.
Han Youngyih;Cho Jae Ho;Park Hee Chul;Chu Sung Sil;Suh Chang-Ok
Radiation Oncology Journal
/
v.20
no.1
/
pp.24-33
/
2002
Purpose : In order to improve dose homogeneity and to reduce acute toxicity in tangential whole breast radiotherapy, we evaluated two treatment techniques using multiple static fields or universal compensators. Materials and Methods : 1) Multistatic field technique : Using a three dimensional radiation treatment planning system, Adac Pinnacle 4.0, we accomplished a conventional wedged tangential plan. Examining the isodose distributions, a third field which blocked overdose regions was designed and an opposing field was created by using an automatic function of RTPS. Weighting of the beams was tuned until an ideal dose distribution was obtained. Another pair of beams were added when the dose homogeneity was not satisfactory. 2) Universal compensator technique : The breast shapes and sizes were obtained from the CT images of 20 patients who received whole breast radiation therapy at our institution. The data obtained were averaged and a pair of universal physical compensators were designed for the averaged data. DII (Dose Inhomogeneity Index : percentage volume of PTV outside $95\~105\%$ of the prescribed dose) $D_{max}$ (the maximum point dose in the PTV) and isodose distributions for each technique were compared. Results : The multistatic field technique was found to be superior to the conventional technique, reducing the mean value of DII by $14.6\%$ (p value<0.000) and the $D_{max}$ by $4.7\%$ (p value<0.000). The universal compensator was not significantly superior to the conventional technique since it decreased $D_{max}$ by $0.3\%$ (p value=0.867) and reduced DII by $3.7\%$ (p value=0.260). However, it decreased the value of DII by maximum $18\%$ when patients' breast shapes fitted in with the compensator geometry. Conclusion : The multistatic field technique is effective for improving dose homogeneity for whole breast radiation therapy and is applicable to all patients, whereas the use of universal compensators is effective only in patients whose breast shapes fit inwith the universal compensator geometry, and thus has limited applicability.
Park, Seon Mi;Cheon, Geum Seong;Heo, Gyeong Hun;Shin, Sung Pil;Kim, Kwang Seok;Kim, Chang Uk;Kim, Hoi Nam
The Journal of Korean Society for Radiation Therapy
/
v.25
no.2
/
pp.187-192
/
2013
Purpose: We investigate the results of changed heart volume and heart dose in the left breast cancer patients while considering the movements of respiration. Materials and Methods: During the months of March and May in 2012, we designated the 10 patients who had tangential irradiation with left breast cancer in the department of radiation Oncology. With acquired images of free breathing pattern through 3D and 4D CT, we had planed enough treatment filed for covered up the whole left breast. It compares the results of the exposed dose and the volume of heart by DVH (Dose Volume histogram). Although total dose was 50.4 Gy (1.8 Gy/28 fraction), reirradiated 9 Gy (1.8 Gy/5 Fraction) with PTV (Planning Target Volume) if necessary. Results: It compares the results of heart volume and heart dose with the free breathing in 3D CT and 4D CT. It represents the maximum difference volume of heart is 40.5%. In addition, it indicated the difference volume of maximum and minimum, average are 8.8% and 27.9%, 37.4% in total absorbed dose of heart. Conclusion: In case of tangential irradiation (opposite beam) in left breast cancer patients, it is necessary to consider the changed heart volume by the respiration of patient and the heartbeat of patient.
Park, Byung-Moon;Bae, Yong-Ki;Kang, Min-Young;Bang, Dong-Wan;Kim, Yon-Lae;Lee, Jeong-Woo
Journal of radiological science and technology
/
v.33
no.3
/
pp.277-282
/
2010
The study is to verify non-uniform dose distribution in Field-In-Field (FIF) technique using two-dimensional ionization chamber (MatriXX, Wellhofer Dosimetrie, Germany) for breast tangential irradiation. The MatriXX and an inverse planning system (Eclipse, ver 6.5, Varian, Palo Alto, USA) were used. Hybrid plans were made from the original twenty patients plans. To verify the non-uniform dose distribution in FIF technique, each portal prescribed doses (90 cGy) was delivered to the MatriXX. The measured doses on the MatriXX were compared to the planned doses. The quantitative analyses were done with a commercial analyzing tool (OmniPro IMRT, ver. 1.4, Wellhofer Dosimetrie, Germany). The delivered doses at the normalization points were different to average 1.6% between the calculated and the measured. In analysis of line profiles, there were some differences of 1.3-5.5% (Avg: 2.4%), 0.9-3.9% (Avg: 2.5%) in longitudinal and transverse planes respectively. For the gamma index (criteria: 3 mm, 3%) analyses, there were shown that 90.23-99.69% (avg: 95.11%, std: 2.81) for acceptable range ($\gamma$-index $\geq$ 1) through the twenty patients cases. In conclusion, through our study, we have confirmed the availability of the FIF technique by comparing the calculated with the measured using MatriXX. In the future, various clinical applications of the FIF techniques would be good trials for better treatment results.
Purpose: To evaluate the contralateral breast dose using a virtual wedge compared with that using a Physical wedge and an open beam in a Siemens linear accelerator. Materials and Methods: The contralateral breast dose was measured using diodes placed on a humanoid phantom. Diodes were placed at 5.5 cm (position 1), 9.5 cm (position 2), and 14 cm (position 3) along the medial-lateral line from the medial edge of the treatment field. A 6-MV photon beam was used with tangential irradiation technique at 50 and 230 degrees of gantry angle. Asymmetrically collimated $17{\times}10cm$ field was used. for the first set of experiment, four treatment set-ups were used, which were an open medial beam with a 30-degree wedged lateral beam (physical and virtual wedges, respectively) and a 15-degree wedged medial beam with a 15-degree wedged lateral beam (physical and virtual wedges, respectively). The second set of experiment consists of setting with medial beam without wedge, a 15-degree wedge, and a 50-degree wedge (physical and virtual wedges, respectively). Identical monitor units were delivered. Each set of experiment was repeated for three times. Results: In the first set of experiment, the contralateral breast dose was the highest at the position 1 and decreased in order of the position 2 and 3. The contralateral breast dose was reduced with open beam on the medial side ($2.70{\pm}1.46%$) compared to medial beam with a wedge (both physical and virtual) ($3.25{\pm}1.59%$). The differences were larger with a physical wedge ($0.99{\pm}0.18%$) than a virtual wedge ($0.10{\pm}0.01%$) at all positions. The use of a virtual wedge reduced the contralateral breast dose by 0.12% to 1.20% of the proscribed dose compared to a physical wedge with same technique. In the second experiment, the contralateral breast dose decreased in order of the open beam, the virtual wedge, and the physical wedge at the position 1, and it decreased in order of a physical wedge, an open beam, and a virtual wedge at the position 2 and 3. Conclusion: The virtual wedge equipped in a Siemens linear accelerator was found to be useful in reducing dose to the contralateral breast. Our additional finding was that the surface dose distribution from the Siemens accelerator was different from a Varian accelerator.
One of the techniques for altering the properties of wood that has received considerable attention in the last twenty years is the formation of a wood-polymer composite (WPC) by irradiation and heat-catalyst polymerization of a monomer incorporated into the wood matrix. Wood-polymer composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC and Staypak. The species examined was Hyunsasi-Namoo (Populus alba ${\times}$ P. glandulosa) which had not been utilized yet. Methylmethacrylate (MMA) as monomer, benzoyl peroxide (BPO) as initiator and methyl alcohol as bulking agent were used. The monomer containing BPO was impregnated into wood pieces by the dipping and the vacuum process for 2 hours. After impregnation, the treated samples were polymerized on the hot press with pressure and heat-catalyst methods. The results obtained were summarized as follows 1. The monomer loading into wood by the dipping process was 12.13 percent and 29.99 percent by the vacuum. The polymer loading into wood by the dipping process was 6.79 percent and 15.44 percent by the vacuum. 2. Comparing with Staypak, antishrink efficiency (ASE) of WPC was 12.5 to 13.6 percent on the radial direction and 14.70 to 18.63 percent on the tangential. Antiswelling efficiency (AE) was 14.40 to 17.22 percent on the radial direction and 17.18 to 42.1 8 to 42.14 percent on the tangential. Reduction in water absorptivity (RWA) was 8.19 to 15.5 percent. As a whole, the vacuum process was better than the dipping. 3. The specific gravity of control, Staypak and WPC were 0.44, 0.66 and 0.61 to 0.62, respectively. 4. In the bending strength test, the strength in case that the load direction is on the radial surface was greater than that which the load direction is on the tangential. 5. Increasing rate of stress at proportional limit in compression perpendicular to grain was 72.26 percent in case of WPC by the dipping process, 78.93 percent by the vacuum and 99.09 percent in case of Staypak.
[ $\underline{Purpose}$ ]: To determine the patterns of evaluation and treatment in patients with breast cancer after mastectomy and treated with radiotherapy. A nationwide study was performed with the goal of improving radiotherapy treatment. $\underline{Materials\;and\;Methods}$: A web- based database system for the Korean Patterns of Care Study (PCS) for 6 common cancers was developed. Randomly selected records of 286 eligible patients treated between 1998 and 1999 from 17 hospitals were reviewed. $\underline{Results}$: The ages of the study patients ranged from 20 to 80 years (median age 44 years). The pathologic T stage by the AJCC was T1 in 9.7% of the cases, T2 in 59.2% of the cases, T3 in 25.6% of the cases, and T4 in 5.3% of the cases. For analysis of nodal involvement, N0 was 7.3%, N1 was 14%, N2 was 38.8%, and N3 was 38.5% of the cases. The AJCC stage was stage I in 0.7% of the cases, stage IIa in 3.8% of the cases, stage IIb in 9.8% of the cases, stage IIIa in 43% of the cases, stage IIIb in 2.8% of the cases, and IIIc in 38.5% of the cases. There were various sequences of chemotherapy and radiotherapy after mastectomy. Mastectomy and chemotherapy followed by radiotherapy was the most commonly performed sequence in 47% of the cases. Mastectomy, chemotherapy, and radiotherapy followed by additional chemotherapy was performed in 35% of the cases, and neoadjuvant chemoradiotherapy was performed in 12.5% of the cases. The radiotherapy volume was chest wall only in 5.6% of the cases. The volume was chest wall and supraclavicular fossa (SCL) in 20.3% of the cases; chest wall, SCL and internal mammary lymph node (IMN) in 27.6% of the cases; chest wall, SCL and posterior axillary lymph node in 25.9% of the cases; chest wall, SCL, IMN, and posterior axillary lymph node in 19.9% of the cases. Two patients received IMN only. The method of chest wall irradiation was tangential field in 57.3% of the cases and electron beam in 42% of the cases. A bolus for the chest wall was used in 54.8% of the tangential field cases and 52.5% of the electron beam cases. The radiation dose to the chest wall was $45{\sim}59.4\;Gy$ (median 50.4 Gy), to the SCL was $45{\sim}59.4\;Gy$ (median 50.4 Gy), and to the PAB was $4.8{\sim}38.8\;Gy$, (median 9 Gy) $\underline{Conclusion}$: Different and various treatment methods were used for radiotherapy of the breast cancer patients after mastectomy in each hospital. Most of treatment methods varied in the irradiation of the chest wall. A separate analysis for the details of radiotherapy planning also needs to be followed and the outcome of treatment is needed in order to evaluate the different processes.
The Journal of Korean Society for Radiation Therapy
/
v.20
no.1
/
pp.37-43
/
2008
Purpose: To evaluate dosimetry results of three different techniques for whole breast irradiation after conservative surgery of large pendulous breast patient. Materials and Methods: Planning computed tomography (CT) scans for three techniques were performed on a GE Hi-speed advantage CT scanner in the supine (SP), supine with breast supporting Device (SD) and prone position on a custom prone mattress (PP). Computed tomography images were acquired at 5 mm thickness. The clinical target volumes (CTV), ipsilateral lung and heart were delineated to evaluate the dose statistic, and all techniques were planned with the tangential photon beams (Pinnacle$^3$, Philips Medical System, USA). The prescribed dose was 50 Gy delivered in 25 fractions. To evaluate the dose coverage for CTV, we analysed percent volume of CTV receiving minimum of 95%, 100%, 105%, and 110% of prescription dose ($V_{95}$, $V_{100}$, $V_{105}$, and $V_{110}$) and minimal dose covering 95% ($D_{95}$) of CTV. The dosimetric comparison for heart and ipsilateral lung was analysed using the minimal dose covering 5% of each organs ($D_5$) and the volume that received >18 Gy for the heart and >20 Gy for the ipsilateral lung. Results: Target volume coverage ($V_{95}$ and $V_{100}$) was not significantly different for all technique. The V105 was lower for PP (1.2% vs. 4.4% for SP, 11.1% for SD). Minimal dose covering 95% ($D_{95}$) of target was 47.5 Gy, 47.7 Gy and 48 Gy for SP, SD and PP. The volume of ipsilateral lung received >20 Gy was 21.7%, 11.6% and 4.9% for SP, SD and PP. The volume of heart received >18 Gy was 17.0%, 16.1% and 9.8% for SP, SD and PP. Conclusion: Prone positioning of patient for large pendulous breast irradiation enables improving dose uniformity with minimal heart and lung doses.
Background: To investigate the impact of the breast size, shape, maximum heart depth (MDH), and chest wall hypotenuse (the distance connecting middle point of the sternum and the length of lung draw on the selected transverse CT slice) on the volumetric dose to heart with whole breast irradiation (WBI) of left-sided breast cancer patients. Materials and Methods: Fifty-three patients with left-sided breast cancer undergoing adjuvant intensity-modulated radiotherapy (IMRT) were enrolled in the study. The primary breast size and shape, MHD and DCWH (chest wall hypotenuse) were contoured on radiotherapy (RT) planning CT slices. The dose data of hearts were obtained from the dose-volume histograms (DVHs). Data were analyzed by one-way analysis of variance (ANOVA), Student's t-test and linear regression analysis. Results: Breast size was independent of heart dose, whereas breast shape, MHD and DCWH were correlated with heart dose. The shapes of breasts were divided into four types, as the flap type, hemisphere type, cone type and pendulous type with heart mean dose being $491.8{\pm}234.6cGy$, $752.7{\pm}219.0cGy$, $620.2{\pm}275.7cGy$, and $666.1{\pm}238.0cGy$, respectively. The flap type of breasts shows a strong statistically reduction in heart dose, compared to others (p=0.008 for V30 of heart). DCWH and MHD were found to be the most important parameters correlating with heart dose in WBI. Conclusions: More attention should be paid to the heart dose of non-flap type patients. The MHD was found to be the most important parameter to correlate with heart dose in tangential WBI, closely followed by the DCWH, which could help radiation oncologists and physicsts evaluate heart dose and design RT plan in advance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.