• Title/Summary/Keyword: Tangent stiffness

Search Result 100, Processing Time 0.024 seconds

A variable layering system for nonlinear analysis of reinforced concrete plane frames

  • Shuraim, Ahmed B.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.17-34
    • /
    • 2001
  • An improved method has been developed for the computation of the section forces and stiffness in nonlinear finite element analysis of RC plane frames. The need for a new approach arises because the conventional technique may have a questionable level of efficiency if a large number of layers is specified and a questionable level of accuracy if a smaller number is used. The proposed technique is based on automatically dividing the section into zones of similar state of stress and tangent modulus and then numerically integrating within each zone to evaluate the sectional stiffness parameters and forces. In the new system, the size, number and location of the layers vary with the state of the strains in the cross section. The proposed method shows a significant improvement in time requirement and accuracy in comparison with the conventional layered approach. The computer program based on the new technique has been used successfully to predict the experimental load-deflection response of a RC frame and good agreement with test and other numerical results have been obtained.

A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells

  • Kim, K.D.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.199-223
    • /
    • 2003
  • The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.

An Elastic Parabolic Cable Element for Initial Shaping Analysis of Cable-Stayed Bridges (사장교의 초기형상해석을 위한 탄성포물선 케이블요소)

  • Kyung, Yong-Soo;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study introduces an elastic parabolic cable element for initial shaping analysis of cable-stayed bridges. First, an elastic catenary cable theory is shortly summarized by deriving the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element. Next, the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived from the assumption that sag configuration under self-weights is small. In addition the equivalent cable tension is defined in the chord-wise direction. Finally, to confirm the accuracy of this element, initial shaping analysis of cable-stayed bridges under dead loads is executed using TCUD in which stay cables are modeled by an elastic parabolic cable and an elastic catenary cable element, respectively. Resultantly it turns that unstrained lengths of stay cables, the equivalent cable tensions, and maximum tensions by the parabolic cable element are nearly the same as those by the catenary cable elements.

Stability and P-Δ Analysis of Generalized Frames with Movable Semi-Rigid Joints (일반화된 부분강절을 갖는 뼈대구조물의 안정성 및 P-Δ 해석)

  • Min, Byoung Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.409-422
    • /
    • 2013
  • For stability design and P-${\Delta}$ analysis of steel frames with semi-rigid connections, the explicit form of the exact tangential stiffness matrix of a generalized semi-rigid frame element having rotational and translational connections is firstly derived using the stability functions. And its elastic and geometric stiffness matrix is consistently obtained by Taylor series expansion. Next depending on connection types of semi-rigidity, the corresponding tangential stiffness matrices are degenerated based on penalty method and static condensation technique. And then numerical procedures for determination of effective buckling lengths of generalized semi-rigid frames members and P-${\Delta}$ and shortly addressed. Finally three numerical examples are presented to demonstrate the validity and accuracy of the proposed method. Particularly the minimum braced frames and coupled buckling modes of the corresponding frames are investigated.

A Study on the Dynamic Post-Buckling Behavior of the Plane Frame Structures Subjected to Circulatory Forces (Circulatory Force를 받는 평면(平面)뼈대 구조물(構造物)의 동적(動的) 후좌굴(後座屈) 거동(擧動)에 관한 연구(硏究))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.13-24
    • /
    • 1988
  • A geometrically nonlinear analysis procedure for plane frame structures in order to study the static and dynamic post-buckling behavior of these structures subjected to circulatory forces is presented. The elastic and geometric stiffness matrices, the mass matrix and load correction stiffness matrix are derived from the extended virtual work principle, where the tangent stiffness matrix becomes non-symmetric due to the effects of non-conservative circulatory forces. The dynamic analysis of plane frame structures subjected to circulatory forces in pre- and post-buckling ranges is carried out by integrating the equations of motion directly by the numerically stable Newmark method. Numerical results are presented in order to demonstrate the vality and accuracy of the proposed procedure.

  • PDF

Geometric Nonlinear F.E. Analysis of Plane Frames Including Effects of the Internal Hinge (내부(內部)힌지효과(效果)를 고려(考慮)한 평면(平面) 뼈대구조(構造)의 기하학적(幾何學的)인 비선형(非線型) 유한요소해석(有限要素解析))

  • Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.93-103
    • /
    • 1994
  • Two beam/column elements are developed in order to analyze the geometric nonlinear plane irames including the effects of internal hinge and transverse shear deformation. In the case of the first element (finite segment method), tangent stiffness matrix is derived by directly integrating the equilibrium equations whereas in the case of the second element (finite element method) elastic and goemetric stiffness matrices are calculated by using the hermitian polynomials including the effects of internal hinge and shear deformation as the shape function. Numerical results are presented for the selected test problems which demonstrate that both elements represent reliable and highly accurate tools.

  • PDF

Geometric Non-linear Analysis of the Plane Frame Structures including Shear Deformation Effect (전단변형(剪斷變形)을 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 기하적(幾何的)인 비선형(非線形) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 1990
  • Two beam/column elements in order to analyze the geometric nonlinear plane framed structures including the effects of transverse shear deformation and bending stretching coupling are developed. In the case of the first element (finite segment method), tangent stiffness matrix are derived by directly integrating the equilibrium equations whereas in the case of the second element (finite element method) elastic and geometric stiffness matrices are calculated by using the hermitian polynomials including shear deformation effect as the shape function. Both elements possess the usual six degree of freedoms. Numerical results are presented for the selected test problems which demonstrate that both elements represent reliable and highly accurate tools.

  • PDF

Multi-objective Optimization for Force Design of Tensegrity Structures (텐세그리티 구조물 설계를 위한 다목적 최적화 기법에 관한 연구)

  • Ohsaki, Makoto;Zhang, Jingyao;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • A multi-objective optimization approach is presented for force design of tensegrity structures. The geometry of the structure is given a priori. The design variables are the member forces, and the objective functions are the lowest eigenvalue of the tangent stiffness matrix that is to be maximized, and the deviation of the member forces from the target values that is to be minimized. The multi-objective programming problem is converted to a series of single-objective programming problems by using the constraint approach. A set of Pareto optimal solutions are generated for a tensegrity grid to demonstrate the validity of the proposed method.

  • PDF

A Study on the Post-Buckling Analysis of Spatial Structures Using Dynamic Relaxation Method (동적이완법을 이용한 후좌굴 해석법의 Hybrid 구조물의 적용성 평가)

  • Lee, Kyong-Soo;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.58-65
    • /
    • 2006
  • The present study is concerned with the application of dynamic relaxation method in the investigation of the large deflection behavior of spatial structures. The dynamic relaxation do not require the computation or formulation of any tangent stiffness matrix. The convergence to the solution is achieved by using only vectorial quantities and no stiffness matrix is required in its overall assembled form. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of using dynamic relaxation methods, in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Nonlinear Static Analysis of Cable Roof Structures with Unified Kinematic Description

  • LEE, Sang Jin
    • Architectural research
    • /
    • v.18 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • A finite element analysis technology applicable to the prediction of the static nonlinear response of cable roof structure is presented. The unified kinematic description is employed to formulate the present cable element and different strain definitions such as Green-Lagrange strain, Biot strain and Hencky strain can be adopted. The Newton-Raphson method is used to trace the nonlinear load-displacement path. In the iteration process, the compressive stress of a cable element is not allowed. For the verification of the present cable element, four numerical examples are tackled. Finally, numerical results obtained by using the present cable element are provided as new benchmark test results for cable structures under static loads.