• Title/Summary/Keyword: Tall height

Search Result 337, Processing Time 0.024 seconds

Various Men's Body Shapes and Drops for Developing Menswear Sizing Systems in the United States

  • HwangShin, Su-Jeong;Istook, Cynthia L.;Lee, Jin-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.12
    • /
    • pp.1454-1465
    • /
    • 2011
  • Menswear body types are often labeled on garments (to indicate how the garments are designed to fit) with indicators of a size category such as regular, portly, and stout, athletic, or big and tall. A drop (relationships between the chest and waist girths) is related to the fit of a tailored suit. However, current standards are not designed for various drops or body types. There is not enough information of categorizing men's body shapes for the apparel sizing systems. In this article, a set of men's data from SizeUSA sizing survey was analyzed to investigate men's body shapes and drops. Factor analysis and a cluster analysis method were used to categorize men's body shapes. In the results, twenty-five variables were selected through the factor analysis and found four factors: girth factor, height factor, torso girth factor, and slope degree factor. According to the factor and cluster analysis, various body shapes were found: Slim Shape (SS - tall ectomorphy), Heavy Shape (HS - athletic, big & tall, endomorphy and mesomorphy), Slant Inverted Triangle Shape (SITS - regular, slight ectomorphy and slight mesomorphy weight range from normal to slightly overweight), Short Round Top Shape (SRTS - portly and stout, endomorphy). Body shapes were related to fitting categories. SS and HS were related to big & tall fitting category. SITS was related to regular. SRTS was related to portly and stout. Shape 1 (31%) and Shape 2 (26%) were related to current big & tall category. Shape 3 (34%) were related to regular. Shape 4 (9%) were in portly and stout category. ASTM D 6240 standard was the only available standard that presented a regular fitting category. Various drops were found within a same chest size group; however, this study revealed great variances of drops by body shape.

Structural Design of Vibration Controlled Tall Building with Overhang Structure

  • Ishibashi, Yoji;Yoshizawa, Katsuhito;Ogawa, Ichiro;Tamari, Masatoshi;Nagayama, Kenji;Oki, Hatsuka
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.177-183
    • /
    • 2019
  • This paper describes the structural design of a 212 m tall building currently under construction in the Tokiwabashi District Redevelopment Project facing Tokyo Station. In this project there was a requirement to rationally solve many issues arising from the conditions of the redevelopment project. In particular, the following two points were considered to be important from the point of view of structural design. 1) To provide an overhang frame with the perimeter columns on the lower stories inclined, in order to enable a typical floor area that greatly exceeded the limitations of the underground structure shape. 2) To provide high grade seismic performance for the office buildings to be constructed on prime city center land. LSCVCS (Lower Stories Concentrated Vibration Control System) was proposed as the method of rationally designing the overhang frame, which is an extremely disadvantageous element in the structural scheme of the tall building with a large slenderness ratio. LSCVCS is a system to provide effective damping by arranging vibration control devices in a concentrated manner in a lower story with large story height, that produces large deformation in an earthquake. Also, the vibration control devices arranged in the lower story are limited to viscous devices, to take into consideration the residual deformation of the overhang frame after an earthquake. The results of investigations into the specific effects of the system for the seismic design are reported, including Performance-based seismic design.

Vegetative Growth, Productivity, and Fruit Quality in Tall Spindle of 'Fuji'/M.9 Apple Trees (키큰방추형 '후지'/M.9 사과나무의 영양생장, 생산성 및 과실품질)

  • Yang, Sang-Jin;Sagong, Dong-Hoon;Yoon, Tae-Myung;Song, Yang-Yik;Park, Moo-Yong;Kweon, Hun-Joong
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.155-165
    • /
    • 2015
  • Well-feathered (over 10 feathers) 'Fuji'/M.9 apple trees were planted at $3.0{\times}1.0m$ and trained to slender spindle with 2.5 m height or to tall spindle with 3.5 m height, and the vegetative growth, productivity, and fruit quality of two training systems were compared for 8 years. The canopy volume of the tall spindle trees surpassed that of the slender spindle trees 4 years after planting and was 25% larger than that of the slender spindle trees 5 years after planting. The accumulated yield over 8 years for the tall spindle system was 14% higher than that of the slender spindle system. Alternate bearing and incidence of marssonina blotch were observed in both treatments after 5 years of planting. There was often vegetative imbalance in the trees however, the degree of yield loss and vegetative imbalance of the tall spindle trees was lower than those of the slender spindle trees. Soluble solid content and fruit red color of the tall spindle trees were higher than that of the slender spindle trees in 5 year after planting, resulting from increased light penetration in the canopy due to even distribution of lateral branches and from fruit bearing in different height locations of the trees. In conclusion, increasing the tree height to about 3.5 m using slender spindle 'Fuji'/M.9 apple trees planted with over 333 trees per 10a led to better light penetration, yield and fruit quality compared to a conventional wide training system with the slender spindle.

Height and Labor Market Outcome: Evidence from Panel Data (신장과 노동시장 성과 관계 : 패널 데이터를 이용한 분석)

  • Cho, Hyunkuk
    • Journal of Labour Economics
    • /
    • v.37 no.2
    • /
    • pp.79-103
    • /
    • 2014
  • Previous studies show that tall people have better labor market outcomes, but controlling for their abilities reduces the size of height effects. This implies that a failure to properly control for one's ability could overestimate the OLS estimate. This paper contributes to the literature by being the first to control for individual fixed effects (FE) and to examine height effects on the probability of one's attaining a leadership position. The data used are panel data of a cohort obtained during the cohort's middle and high school years. In OLS estimation, this paper finds positive height effects for boys. However, when controlling for individual fixed effects, the estimate is not statistically significant. For girls, the height effects are found on neither OLS nor FE model.

  • PDF

A Comparison Study on the Body Types of Korean Women and Korean Women Residing in Japan -Focusing on Women in Their Forties- (한국 여성과 일본 거주 한인 여성의 체형비교 연구 -40대를 중심으로-)

  • Lee, Jong-Sook;Seok, Hye-Jung;Im, Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.4
    • /
    • pp.554-562
    • /
    • 2009
  • As a result of comparison analysis on body types of Korean women in their forties and Korean women residing in Japan, the following results had been found. 1. In terms of factors composing the body type, while women residing in Korea did not show large differences in obesity and horizontal size factors, women living in Japan showed higher contribution of obesity factor compared to horizontal size factor. That is, obesity factor was substantially more important among factors composing the body type for women residing in Japan. 2. Cluster analysis was done to understand the characteristics of body types and comparatively analyze them. Women residing in Korea were classified into tall and normal body, normal height with obese body, and short and chubby body. Women residing in Japan showed different characteristics with tall and obese body, tall and normal body with long lower part, and short and thin body. As a result of this study, identical ethnic group was found to take on different body types resulting from sociocultural differences and difference in eating habits if their place of residence differs for a long time.

Bird Communities in Rice Field and Grasslands during the Dry Season in the Mekong Delta, Cambodia

  • Kry, Msphal;Lee, Woo-Shin;Park, Sung Jin;Rhim, Shin-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.2
    • /
    • pp.197-202
    • /
    • 2009
  • We studied bird communities among in rice field (46 plots), short grallland (47plot), and tall grass mixed shrub (21 plots) during dry season, January 2007 in Boeung Prek Lapouv (BPL) Important Bird Area, Mekong Delta, Cambodia using the point-count method. Water depth, vegetation height and shrub density were significantly different among the three study areas. We recorded, 60 bird species, of which 13 differed significantly among habitats. Landbirds such as Grey-breasted Prinia (Prinia hodgsonii) and Oliver-black Sunbird (Nectarinia jugularis) were much more abundant (P<0.0001) in the tall grass mixed shrub, whereas the Sarus Crane (Grus antigone), herons and egrets were more abundant in the short grass (P<0.05). Bird species richness and species abundances were not significantly different among habitats. Bird species diversity (H') was higher in grasslands than in rice fields. Mosaic habitat matrix, such as rice field, short grass, and tall grass mixed shrub, should be maintained for the extend and quality of wetlands, and the prevailing human-land use patterns, appear adequate and conductive for waterbirds in the Mekong Delta, Cambodia.

E/V Shaft Cooling Method as a Stack Effect Countermeasure in Tall Buildings

  • Lee, Joonghoon;Song, Doosam;Jeong, Eunyoung
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • The higher the building height and the larger the temperature difference between the outdoor and indoor space, the more remarkable is the draft driven by the stack effect in high-rise buildings. Moreover, the stack effect can bring about the deterioration of habitability and the degradation of the performance of the indoor control system in high-rise buildings. In this study, as a measure to attenuate the stack effect, the E/V shaft cooling method was proposed and its performance was compared with the conventional stack effect control method for strengthening the air-tightness of the building using a numerical simulation method. The total decreasing ratios on the stack effect in a building were compared, and the probabilities of the secondary problems were analyzed. The results show that the E/V shaft cooling is very effective to decrease the stack effect in a high-rise building in terms of the reduction performance and application. Moreover, this method does not cause secondary problems, such as stack pressure transition to other walls, unlike the conventional stack effect mitigation method.

Implication of rubber-steel bearing nonlinear models on soft storey structures

  • Saiful Islam, A.B.M.;Hussain, Raja Rizwan;Jumaat, Mohammed Zamin;Mahfuz ud Darain, Kh.
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.603-619
    • /
    • 2014
  • Soft storey buildings are characterised by having a storey that has a large amount of open space. This soft storey creates a major weak point during an earthquake. As the soft stories are typically associated with retail spaces and parking garages, they are often on the lower levels of tall building structures. Thus, when these stories collapse, the entire building can also collapse, causing serious structural damage that may render the structure completely unusable. The use of special soft storey is predominant in the tall building structures constructed by several local developers, making the issue important for local building structures. In this study, the effect of the incorporation of an isolator on the seismic behaviour of tall building structures is examined. The structures are subjected to earthquakes typical of the local city, and the isolator is incorporated with the appropriate isolator time period and damping ratio. A FEM-based computational relationship is proposed to increase the storey height so as to incorporate the isolator with the same time period and damping ratio for both a lead rubber bearing (LRB) and high-damping rubber bearing (HDRB). The study demonstrates that the values of the FEM-based structural design parameters are greatly reduced when the isolator is used. It is more beneficial to incorporate a LRB than a HDRB.

Investigations of elastic vibration periods of tall reinforced concrete office buildings

  • Al-Balhawi, Ali;Zhang, Binsheng
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.209-223
    • /
    • 2019
  • The assessment of wind-induced vibration for tall reinforced concrete (RC) buildings requires the accurate estimation of their dynamic properties, e.g., the fundamental vibration periods and damping ratios. In this study, RC frame-shear wall systems designed under gravity and wind loadings have been evaluated by utilising 3D FE modelling incorporating eigen-analysis to obtain the elastic periods of vibration. The conducted parameters consist of the number of storeys, the plan aspect ratio (AR) of buildings, the core dimensions, the space efficiency (SE), and the leasing depth (LD) between the internal central core and outer frames. This analysis provides a reliable basis for further investigating the effects of these parameters and establishing new formulas for predicting the fundamental vibration periods by using regression analyses on the obtained results. The proposed constrained numerically based formula for vibration periods of tall RC frame-shear wall office buildings in terms of the height of buildings reasonably agrees with some cited formulas for vibration period from design codes and standards. However, the same proposed formula has a high discrepancy with other cited formulas from the rest of design codes and standards. Also, the proposed formula agrees well with some cited experimentally based formulas.

Multi-objective Optimization of Pedestrian Wind Comfort and Natural Ventilation in a Residential Area

  • H.Y. Peng;S.F. Dai;D. Hu;H.J. Liu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.315-320
    • /
    • 2022
  • With the rapid development of urbanization the problems of pedestrian-level wind comfort and natural ventilation of tall buildings are becoming increasingly prominent. The velocity at the pedestrian level ($\overline{MVR}$) and variation of wind pressure coefficients $\overline{{\Delta}C_p}$ between windward and leeward surfaces of tall buildings were investigated systematically through numerical simulations. The examined parameters included building density ρ, height ratio of building αH, width ratio of building αB, and wind direction θ. The linear and quadratic regression analyses of $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were conducted. The quadratic regression had better performance in predicting $\overline{MVR}$ and $\overline{{\Delta}C_p}$ than the linear regression. $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were optimized by the NSGA-II algorithm. The LINMAP and TOPSIS decision-making methods demonstrated better capability than the Shannon's entropy approach. The final optimal design parameters of buildings were ρ = 20%, αH = 4.5, and αB = 1, and the wind direction was θ = 10°. The proposed method could be used for the optimization of pedestrian-level wind comfort and natural ventilation in a residential area.