• Title/Summary/Keyword: Take-off and Landing

Search Result 205, Processing Time 0.021 seconds

A Study on the Prevention of Bird Collision in UAM (UAM 조류 충돌 방지대책 수립에 관한 연구)

  • Daniel Kim;Hee-duk Cho;Seung-woo Lee;Jae-woo Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.338-347
    • /
    • 2024
  • This paper deals with the study of bird collision avoidance measures in UAM operations from an operator's perspective. Urban air traffic is defined as a next-generation transportation system that uses environmentally friendly electric vertical take-off and landing (eVTOL) aircraft to provide transportation services between key points within and around urban centers. For the successful establishment of the UAM industry, it is necessary to ensure safety issues that determine public acceptance. Among the hazards that can occur in aviation operations, preventing bird collisions in urban environments is a measure that can greatly secure operational safety and public acceptance. In addition to physical measures, procedural control measures are required to prevent bird strikes. In order to ensure the safety of UAM operations, this study aims to provide a direction for the establishment of UAM bird collision prevention measures by categorizing bird collision prevention measures into physical and procedural methods and flight sections such as takeoff, landing, and corridor sections. Through this, we hope to contribute to the improvement of the safety of the urban air traffic operation system.

Single Engine Failure during Approach and Transition Analyses of VTOL Aircraft (수직이착륙기의 착륙접근시 단일엔진고장 및 비행전이 영역 해석)

  • Yoon, Sang-Joon;Ahn, Byung-Ho;Choi, Dong-Hoon;Mavris, Dimitri
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.50-56
    • /
    • 2005
  • The objective of this study is to find the optimal thrust condition and wing loading of a vertical take-off and landing (VTOL) fixed-wing aircraft through a single engine failure analysis during landing approach and an analysis of transition flight. The aircraft analysis modules used in the study are based on the aircraft synthesis program. To achieve the computing infrastructure for aircraft design and analysis, the EMDIOS was employed as a design framework, which is a semi-completed application program and ready to customize. Simulation results reveal the most critical height at the event of single engine failure is approximately 40 ft. And, in order to avoid a significant loss in altitude during the transition, the thrust to weight ratio must be kept high, while both the engine tilt speed and the wing loading must be kept low, as confirmed by the analysis results.

Take-off and landing assistance system for efficient operation of compact drone CCTV in remote locations (원격지의 초소형 드론 CCTV의 효율적인 운영을 위한 이착륙 보조 시스템)

  • Byoung-Kug Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.287-292
    • /
    • 2023
  • In the case of fixed CCTV, there is a problem in that a shadow area occurs, even if the visible range is maximized by utilizing the pan-tilt and zoom functions. The representative solution for that problem is that a plurality of fixed CCTVs are used. This requires a large amount of additional equipment (e.g., wires, facilities, monitors, etc.) proportional to the number of the CCTVs. Another solution is to use drones that are equipped with cameras and fly. However, Drone's operation time is much short. In order to extend the time, we can use multiple drones and can fly one by one. In this case, drones that need to recharge their batteries re-enter into a ready state at the drone port for next operation. In this paper, we propose a system for precised positioning and stable landing on the drone port by utilizing a small drone equipped with a fixed forward-facing monocular camera. For our conclusion, we implement our proposed system, operate, and finally verify our feasibility.

Effective simulation-based optimization algorithm for the aircraft runway scheduling problem

  • Wided, Ali;Fatima, Bouakkaz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.335-347
    • /
    • 2022
  • Airport operations are well-known as a bottleneck in the air traffic system, putting growing pressure on the world's busiest airports to schedule arrivals and departures as efficiently as possible. Effective planning and control are essential for increasing airport efficiency and reducing aircraft delays. Many algorithms for controlling the arrival/departure queuing area are handled, considering it as first in first out queues, where any available aircraft can take off regardless of its relative sequence with other aircraft. In the suggested system, this problem was compared to the problem of scheduling n tasks (plane takeoffs and landings) on a multiple machine (runways). The proposed technique decreases delays (via efficient runway allocation or allowing aircraft to be expedited to reach a scheduled time) to enhance runway capacity and decrease delays. The aircraft scheduling problem entails arranging aircraft on available runways and scheduling their landings and departures while considering any operational constraints. The topic of this work is the scheduling of aircraft landings and takeoffs on multiple runways. Each aircraft's takeoff and landing schedules have time windows, as well as minimum separation intervals between landings and takeoffs. We present and evaluate a variety of comprehensive concepts and solutions for scheduling aircraft arrival and departure times, intending to reduce delays relative to scheduled times. When compared to First Come First Serve scheduling algorithm, the suggested strategy is usually successful in reducing the average waiting time and average tardiness while optimizing runway use.

The Role of Interdependence, Trust, Cooperation, and Relationship Effectiveness on Pilot and Air Traffic Controller Relationships (조종사와 항공교통관제사간의 상호의존성, 신뢰, 협력, 관계의 효과성에 관한 연구)

  • Choi, Y.C.;Kim, C.Y.;Kang, I.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.5-13
    • /
    • 2001
  • There are many studies which reveal most of the accidents are related to pilot errors. Looking at each phase of flight, the accidents which occurred at the segments of take-off and landing consist of 70%, cause these phases need precise cooperations between pilots and ATC specialists to make sure every instructions understood and instruments to be normal. Therefore, the accidents of these phases leave great regrets and the price was enormous to people and equipments. Until now, most of the studies investigate the accident itself and very few show the relationships between pilots and air traffic controllers. This study analyzes the impacts of inter-dependence to mutual trust, cooperations and relationship efficiency between them who play important parts in flight. Based upon the findings, the inter-dependence has an effect on mutual trust and the latter influences to cooperations. Also, mutual trust and cooperations have a leading role in the relationship efficiency. It implies that mutual trust, cooperations, and the degree of inter-dependence are important factors to improve the relationships between them.

  • PDF

A Study for Efficient Foreign Object Debris Detection on Runways (활주로 FOD 탐지 효율화를 위한 기술적 고찰)

  • Lee, Kwang-Byeng;Lee, Jonggil;Kim, Donghoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.130-135
    • /
    • 2014
  • FOD(Foreign Object Debris) has the potential threat to damage aircraft during critical phases of take-off and landing roll with some objects including metal on the runway. FOD can be found anywhere on an airport's air operation areas such as runway, taxiway and apron. It can lead to catastrophic loss of life and airframe, and increased maintenance and operating costs. In this paper, we defined FOD and surveyed its riskiness and necessity of automatic FOD detection system. We compared the requirements of the environment in Korea to the FAA advisory circular. Also we analyzed operation methods of FOD detection systems already installed at some airports. Based on the surveys mentioned above, we propose hybrid type of FOD detection system considering the environment in Korea which uses millimeter wave radar, optical camera and thermal imaging camera to detect FOD efficiently. In management approach, fixed type of the system should be installed for real-time monitoring, and mobile type of the system can be used additionally.

Emissions of Air Pollutants and Greenhouse Gases from Aircraft Activities at the Gimhae International Airport (김해공항에서 항공기에 의한 대기오염물질과 온실가스의 배출량 산정 및 특성 분석)

  • Song, Sang-Keun;Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.190-202
    • /
    • 2012
  • Emissions of air pollutants and greenhouse gases (GHGs) by aircraft at the Gimhae International Airport (GIA) were investigated using the Emissions and Dispersion Modeling System (EDMS) version 5.1.3. The number of Landing and Take-Off (LTO) at the GIA for aircraft B737 was dominant, accounting for more than 60% of the total LTOs. For air pollutant emissions, CO was the most dominant pollutant by aircraft, followed by $NO_x$, VOCs, $SO_x$, etc. The emissions of CO, $NO_x$, and VOCs in 2009 (and 2010) at the GIA were 974 (968), 447 (433), 118 (122) ton/yr, respectively. The emissions of GHGs such as $CO_2$, $CH_4$, and $N_2O$ in 2009 (and 2010) were 110,795 (111,114), -0.157 (-0.151), and 1,989 (1,998) ton/yr, respectively. The negative number in $CH_4$ emission represents the consumption of atmospheric $CH_4$ in the engine. In addition, the emissions of most air pollutants (except for $PM_{10}$) and GHGs were estimated to be high in Taxi-Out and Climb-Out modes.

Multi-objective parametric optimization of FPSO hull dimensions

  • Lee, Jonghun;Ruy, Won-Sun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.734-745
    • /
    • 2021
  • In order to achieve a good and competitive FPSO design, the building cost and the motion performances are the two most critical and conflicting KPIs to be considered. In this study, the author's previous work (Lee, et al., 2021) on the optimization of an FPSO's hull dimensions with 1800 MBBLs storage capacity at Brazil field was extended using a multi-objective parametric optimization with the hull steel weight and the operability which are closely related to the building cost and the operational cost during the lifetime, respectively. For the purpose of more realistic and practical FPSO design, the constraints related to crew comfort and the safe helicopter take-off and landing operation were newly added. Also, the green water on deck was calculated accurately to check the suitability of the designed freeboard height using a newly developed real-time calculation module for the relative wave elevations. With aids of this updated optimization formulation, we presented multiple optimal FPSO dimensions expressed as a Pareto set which aids FPSO designers to conveniently select the practical and competitive dimensions. The excellence of the developed approach was verified by comparing the optimization results with those of FPSOs dimensioned for operation at West Africa and Brazil field.

A numerical method for the study of fluidic thrust-vectoring

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.367-378
    • /
    • 2016
  • Thrust Vectoring is a dynamic feature that offers many benefits in terms of maneuverability and control effectiveness. Thrust vectoring capabilities make the satisfaction of take-off and landing requirements easier. Moreover, it can be a valuable control effector at low dynamic pressures, where traditional aerodynamic controls are less effective. A numerical investigation of Fluidic Thrust Vectoring (FTV) is completed to evaluate the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The methodology presented is general and can be used to study different techniques of fluidic thrust vectoring like shock-vector control, sonic-plane skewing and counterflow methods. For validation purposes the method will focus on the dual-throat nozzle concept. Internal nozzle performances and thrust vector angles were computed for several range of nozzle pressure ratios and fluidic injection flow rate. The numerical results obtained are compared with the analogues experimental data reported in the scientific literature. The model is integrated using a finite volume discretization of the compressible URANS equations coupled with a Spalart-Allmaras turbulence model. Second order accuracy in space and time is achieved using an ENO scheme.

Noise Prediction of Hovering Tilt Rotor (정지 비행 시 틸트 로터에서 발생하는 소음 예측)

  • Kim, Kyu-Young;Lee, Seong-kyu;Lee, Duck-Joo;Hong, Suk-Ho;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.821-825
    • /
    • 2005
  • Tilt rotor aircraft was developed for satisfying VSTOL (vertical short take off and landing) capability and cruise performance. However the noise generated by tilt rotor system causes one of the most serious problems. In this paper, noise characteristics of tilt rotor system in hovering flight are predicted by using free wake method and Lowson's formula. The flow field of the tilt rotor is simulated by using time marching free wake method, and the free field acoustic pressure is calculated through Lowson's formula. The predicted results are compared with experimental data at various observing positions. In the near field, they show good agreement with experimental data regardless of rotating speed and collective pitch angles of 6, 8 and 10 degree, although there are some discrepancies between prediction and experiment in the far field and at the rotating axis in the near field. It seems that the reason of these discrepancies is difference of unsteady force fluctuation between experiment and calculation.

  • PDF