• 제목/요약/키워드: Tail gas

검색결과 69건 처리시간 0.029초

HCNG용 버너시스템에서 Tail Gas 첨가 시 연소특성 (Combustion Characteristics of HCNG Burner System with Tail Gas Addition)

  • 한정옥;이중성;김형태;김상민;이영철;김용철;홍성호
    • 한국연소학회지
    • /
    • 제20권2호
    • /
    • pp.36-39
    • /
    • 2015
  • The combustion characteristics of metal fiber burner fueled natural gas with tail gas produced from reforming process were analyzed on the point of flame stability and excess air conditions. Also, it was analyzed the effect of energy efficiency improvement due to decrease the fuel input in reforming system by using residue gases. As a results, it was confirmed that tail gas including hydrogen, CO and $CO_2$ could be directly injected without any change of air control system in natural gas burner and also energy efficiency was increased up to 30% maintained stable combustion.

차량 장착상태에서의 가스 스프링 동적 특성 연구 (A Study on the Dynamic Characteristics of the Gas Spring on the Automotive Application)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.15-20
    • /
    • 2015
  • Unlike a typical metal spring, a gas spring uses compressed gas contained in a cylinder and compressed by a piston to exert a force. A common application includes automobiles where gas spring are incorporated into the design of open struts that support the weight of tail gate. They are also used in furniture such as office chairs, and in medical and aerospace applications. The gas spring works by the application of pressurized gas (nitrogen) contained in a cylinder. The internal pressure of the gas spring greatly exceeds atmospheric pressure. This differential in pressure exists at any rod position and generates an outward force on the rod, making the gas spring extend. In this paper, we investigated the dynamic characteristics of a gas spring on an automotive tail gate system.

카본블랙 제조공정의 안전성 향상에 관한 연구 (A Study on the Safety Improvement of Carbon Black Manufacturing Process)

  • 주종율;정필훈;이성은
    • 대한안전경영과학회지
    • /
    • 제25권4호
    • /
    • pp.153-161
    • /
    • 2023
  • Carbon black is a material in the form of fine black powder obtained by incomplete combustion or pyrolysis of hydrocarbons, and is composed of 90-99% carbon, and the rest is composed of hydrogen and oxygen. In the event of an emergency during the manufacture of carbon black, the generated tail gas should be safely discharged through an emergency line to prevent fire, explosion, and environmental pollution accidents caused by the tail gas. If the pressure continues to rise, the pressure control valve shall operate and the rupture plate shall be ruptured sequentially and the tail gas shall be discharged to the vent stack through the emergency line. As an emergency emission system, even if some untreated substances in the tail gas are released into the atmosphere, they are lighter than air, so it is safe to discharge them to a safe place through the Vent Stack. If the gas pressure is rising or worse, it is discharged from the Vent Stackine, and discharging fuel.

유압 구동계 에너지 재생 브레이크를 적용한 자동차 테일게이트 개폐장치에 대한 동특성 해석 (Dynamic Analysis on the Tail Gate System for Vehicle with the Energy Regenerative Brake of Hydraulic Driven Systems)

  • 최순우;허준영
    • 유공압시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.19-26
    • /
    • 2010
  • The typical trunk lid system for vehicle is composed of a hinge having 4-bar link and gas lifter. Here, the energy regenerative brake of hydraulic driven systems is applied to the tail gate system for vehicle and removed the gas lifter. The new tail gate system is composed of a hydraulic pump by electric motor, a hydraulic motor, four check valves, an accumulator, a relief valve and a directional control valve. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action. The capacity selection method of accumulator by mathematical model is based upon trial and error approach and computer simulation by AMEsim software is carried out.

  • PDF

사이드스커트와 보트테일을 이용한 대형화물차량의 연비개선 효과 및 온실가스 감축량 추정 (Estimation of GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Side Skirt and Boat Tail)

  • 허철행;윤병규;김대욱
    • 한국기후변화학회지
    • /
    • 제7권2호
    • /
    • pp.177-184
    • /
    • 2016
  • Recently, the need for technology development of commercial vehicle fuel consumption has emerged. Fuel economy improvement of transport equipment and transportation efficiency, and increasing attention to the logistics cost reduction measures. Increasing attention to the logistics cost reduction measures by fuel economy improvement of transport equipment and transportation efficiency. In this study, we have installed aerodynamic reduction device (side skirt, boat tail) to 14.5 ton cargo trucks and 45 ft tractor-trailers. And the fuel consumption was compared installed before and after. Fuel economy assessment for the aerodynamic reduction value device was tested by modifying the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test in according domestic situation. Greenhouse gas reductions were calculated in accordance with the scenario, including fuel consumption test results. When the 14.5 ton cargo trucks has been equipped with side skirts and boat tail, it confirmed the improvement in fuel efficiency of 4.72%. One Heavy-duty truck's the annual greenhouse gas reductions value are $6.86ton\;CO_2\;eq$. And if applying the technology to more than 50% of registered 15 ton trucks, greenhouse gas reductions are calculated as $686,826ton\;CO_2\;eq./yr$.

75kW 용융탄산염 연료전지 시스템의 MBOP 개발 (The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell)

  • 김범주;김도형;이정현;강승원;임희천
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF

75kW급 연료전지 시스템의 이젝터 설계 및 시험 (The Design and Test of Ejectors for a 75-kW Fuel Cell System)

  • 김범주;김도형;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.678-685
    • /
    • 2011
  • An Ejector enhances system efficiency, are easily operated, have a mechanically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 75-kW Molten Carbonate Fuel Cell (MCFC) system at KEPCO Research Institute. In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In the first place, a few sample ejectors were manufacured and the entrainment ratio was measured at a dummy stack. Through this experiment, the optimum ejector was chosen. The 75-kW MCFC system equipped with this optimum ejector was operated successfully.

자동차용 가스 스프링의 반력 특성에 관한 연구 (A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

Copula 모형을 이용한 에너지 가격과 경제적 불확실성 사이의 의존관계 분석 (Analysis on the Dependence Structure between Energy Price and Economic Uncertainty Using Copula Model)

  • 김부권;최기홍;윤성민
    • 자원ㆍ환경경제연구
    • /
    • 제29권2호
    • /
    • pp.145-170
    • /
    • 2020
  • 본 연구는 에너지(석유, 천연가스, 석탄) 가격과 경제적(실물 및 금융) 불확실성 사이의 의존성 구조를 분석하였다. Copula 모형을 이용해 얻은 의존구조 분석 결과를 요약하면 다음과 같다. 첫째, 에너지 가격과 실물·금융 불확실성 조합의 적합한 모형을 살펴보면, 원유가격과 실물·금융 불확실성 조합은 BB7 copula 모형, 천연가스 가격과 실물·금융 불확실성 조합은 Joe copula 모형, 석탄 가격과 실물·금융 불확실성 조합은 Clayton copula 모형이 각각 가장 적합한 모형으로 선정되었다. 둘째, 전체적인 의존성 구조를 살펴보면, 원유가격, 천연가스 가격, 석탄 가격과 실물 불확실성은 양(+)의 의존성을 보였다. 그렇지만 금융 불확실성과 원유가격은 양(+)의 의존성을 갖지만, 천연가스 가격과 석탄 가격은 금융 불확성과 음(-)의 의존성을 가지는 것으로 나타났다. 전체적으로 보면, 에너지원 중 원유가격이 실물·금융 불확실성과 가장 높은 의존성을 가지는 것으로 나타났다. 셋째, 극단적인 사건을 나타내는 꼬리 의존성을 분석한 결과, 실물 불확실성과 원유, 천연가스 가격은 위 꼬리 의존성만 보이는 비대칭 관계를 가지는 것으로 나타났으며, 금융 불확실성과 원유가격은 위 꼬리 의존성만 보이는 비대칭 관계를 가지는 것으로 나타났다. 즉, 비대칭 관계를 갖는 에너지 가격은 부정적인 극단사건이 발생하는 경우 불확실성 변수와 강한 의존관계가 있는 것으로 나타났다. 반면, 경제적 불확실성과 석탄 가격은 꼬리 의존성이 없는 것으로 나타났다.