• Title/Summary/Keyword: Taguchi design method

Search Result 597, Processing Time 0.034 seconds

Optimization of static response of laminated composite plate using nonlinear FEM and ANOVA Taguchi method

  • Pratyush Kumar Sahu;Trupti Ranjan Mahapatra;Sanjib Jaypuria;Debadutta Mishra
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.625-639
    • /
    • 2023
  • In this paper, a Taguchi-based finite element method (FEM) has been proposed and implemented to assess optimal design parameters for minimum static deflection in laminated composite plate. An orthodox mathematical model (based on higher-order shear deformation plate theory and Green-Lagrange geometrical nonlinearity) has been used to compute the nonlinear central deflection values of laminated composite plates according to Taguchi design of experiment via a self-developed MATLAB computer code. The lay-up scheme, aspect ratio, thickness ratio and the support conditions of the laminated composite plate structure were designated as the governable design parameters. Analysis of variance (ANOVA) is used to investigate the effect of diverse control factors on the nonlinear static responses. Moreover, regression model is developed for predicting the desired responses. The ANOVA revealed that the lay-up scheme alongside the support condition plays vital role in minimizing the central deflection values of laminated composite plate under uniformly distributed load. The conformity test results of Taguchi analysis are also in good agreement with the numerical experimentation results.

Study on decreasing displacement of the MC(machining center) moved column with high-speed for the Taguchi method (다구찌 방법을 이용한 초고속 컬럼 이동형 머시닝 센터의 진동 저감 방안 연구)

  • Chung W.J.;Lee C.M.;Cho D.Y.;Yoon S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.445-446
    • /
    • 2006
  • By the reason of increased demand of high productivity, the researches on manufacturing process and equipments for reducing cycle time have been made in many directions of a machine tool industries. Among these, this paper proposed method of decreasing displacement in MC(machining center). Factors affecting displacement are a motor mass, head thickness, column thickness and base thickness. In this paper We could find design factors has much influence on decreasing the unclamping time using the Taguchi method and optimized the level of the factors using $ADAMS^{(R)}$.

  • PDF

Taguchi Robust Design of Tracked Vehicle for Manganese Nodule Test Miner in Collecting Operation Considering Deep-sea Noise Factors (심해 잡음인자를 고려한 망간단괴 시험집광기의 채집운용시 주행장치 다구치 강건설계)

  • Cho, Su-Gil;Lee, Min-Uk;Lim, Woo-Chul;Choi, Jong-Su;Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Lee, Tae-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • A deep-sea manganese nodule miner consists of 4 parts: the pickup device, crusher, disposal device, and tracked vehicle. The tracked vehicle is an essential component to keep the self-propelled miner moving across deep-sea soil. The performances of the tracked vehicle are influenced by noise factors: the shear strength of the seafloor, bottom current, seafloor slope, track speed, reaction forces of flexible hose, etc. It is necessary to adopt a robust design method that improves the performances and minimizes the variation caused by noise factors. Taguchi's method, the most widely known robust design method, searches for the robust optimum using an orthogonal array composed of the product of the inner array and outer array. In this paper, we propose a new screening technique to reduce the number of input factors and apply the MRSN (Multi-Response Signal to Noise) ratio to convert multiple performances into single one in order to overcome the difficulties and limitations of using Taguchi's method in a case with many input factors and multiple performances. A test miner was already designed and tested. It has about 1/10 the capacity of a commercial one and was successfully operated at an in-shore area. Taguchi's robust design was applied to the tracked vehicle of the test miner, and design improvements were implemented for the vehicle.

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

A Taguchi Approach to Parameter Setting in a Genetic Algorithm for General Job Shop Scheduling Problem

  • Sun, Ji Ung
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.119-124
    • /
    • 2007
  • The most difficult and time-intensive issue in the successful implementation of genetic algorithms is to find good parameter setting, one of the most popular subjects of current research in genetic algorithms. In this study, we present a new efficient experimental design method for parameter optimization in a genetic algorithm for general job shop scheduling problem using the Taguchi method. Four genetic parameters including the population size, the crossover rate, the mutation rate, and the stopping condition are treated as design factors. For the performance characteristic, makespan is adopted. The number of jobs, the number of operations required to be processed in each job, and the number of machines are considered as noise factors in generating various job shop environments. A robust design experiment with inner and outer orthogonal arrays is conducted by computer simulation, and the optimal parameter setting is presented which consists of a combination of the level of each design factor. The validity of the optimal parameter setting is investigated by comparing its SN ratios with those obtained by an experiment with full factorial designs.

Robust Design of Air Compressor-Driving Quadratic Linear Actuator in Fuel Cell BOP System using Taguchi Method

  • Kim, Jae-Hee;Kim, Jun-Hyung;Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.275-279
    • /
    • 2012
  • The linear actuator has the inherent drawback of air gap variation because its linear motion is usually guided by the springs, which destabilizes the dynamic performance. In order to design the linear actuator to be insensitive to air gap, this paper describes the robust design of the air compressor driving linear actuator using Taguchi method. The orthogonal arrays are constructed with selected control factors and noise factor for minimum experiment. The control factors are thickness of inner magnet, height of upper yoke, thickness of outer magnet and thickness of lower yoke while noise factor is airgap. The finite element analysis using commercial electromagnetic analysis program "MAXWELL" are performed instead of experiment. ANOVA are performed to investigate the effects of design factors. In result, the optimal robust linear actuator which is insensitive to air gap variation is designed.

A Study on Ship Shape Design Optimization for RCS Reduction Using Taguchi Method (다구치 방법을 이용한 함정 RCS 형상최적화에 관한 연구)

  • Cho, Yong-Jin;Park, Dong-Hoon;Ahn, Jong-Woo;Park, Cheol-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.693-699
    • /
    • 2006
  • This paper proposes a design optimization technique for ship RCS signature reductions using Taguchi method. The proposed technique comprises of i)evaluating initial RCS signatures, ii)defining critical areas which should be modified as design parameters, and threat factors which can't be controlled artificially as noise parameters, and finally iv)finding optimum parameters via analyzing signal to noise ratios for designated characteristics. We applied the technique to a model ship and found that it is suitable for radar stealth designs. In addition, the proposed technique is applicable to submarine designs against sonar threats.

Optimal Design of Smart Panel using Taguchi Method (다구찌법을 이용한 스마트 판넬의 최적 설계)

  • Zhao, Lijie;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.188-191
    • /
    • 2005
  • Taguchi method is used to determine the optimal configuration of PZT (Lead Zirconate-Titanate) patch on the host structure for improving the performance of piezoelectric shunt system. The charges generated on the surface of PZT patch are selected to be the objective function in the Taguchi method. Full three dimensional finite element models are used to simulate vibration of smart panel and to obtain the admittance of the piezoelectric shunt system. Using Taguchi method in Minitab, the optimal model is obtained. The experiment with piezoelectric shunt circuit is performed to verify the validity of the optimal model comparing with initial model.

  • PDF

Friction Properties of Carbon Coated Ultra-thin Film using Taguchi Experimental Design (다구찌 실험계획법을 이용한 탄소코팅 초박막의 마찰특성)

  • 안준양;김대은;최진용;신경호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.143-150
    • /
    • 2003
  • Frictional properties of ultra-thin carbon coatings on silicon wafer were investigated based on Taguchi experimental design method. Sensitivity analysis was performed with normal load, relative humidity, deposition process, and coating thickness as the variables. It was found that despite low thickness, the carbon coating resulted in relatively low friction coefficient. Also, the frictional behavior was affected significantly by humidity and normal load.