• Title/Summary/Keyword: Tagged corpus

Search Result 91, Processing Time 0.019 seconds

Detecting Errors in POS-Tagged Corpus on XGBoost and Cross Validation (XGBoost와 교차검증을 이용한 품사부착말뭉치에서의 오류 탐지)

  • Choi, Min-Seok;Kim, Chang-Hyun;Park, Ho-Min;Cheon, Min-Ah;Yoon, Ho;Namgoong, Young;Kim, Jae-Kyun;Kim, Jae-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.7
    • /
    • pp.221-228
    • /
    • 2020
  • Part-of-Speech (POS) tagged corpus is a collection of electronic text in which each word is annotated with a tag as the corresponding POS and is widely used for various training data for natural language processing. The training data generally assumes that there are no errors, but in reality they include various types of errors, which cause performance degradation of systems trained using the data. To alleviate this problem, we propose a novel method for detecting errors in the existing POS tagged corpus using the classifier of XGBoost and cross-validation as evaluation techniques. We first train a classifier of a POS tagger using the POS-tagged corpus with some errors and then detect errors from the POS-tagged corpus using cross-validation, but the classifier cannot detect errors because there is no training data for detecting POS tagged errors. We thus detect errors by comparing the outputs (probabilities of POS) of the classifier, adjusting hyperparameters. The hyperparameters is estimated by a small scale error-tagged corpus, in which text is sampled from a POS-tagged corpus and which is marked up POS errors by experts. In this paper, we use recall and precision as evaluation metrics which are widely used in information retrieval. We have shown that the proposed method is valid by comparing two distributions of the sample (the error-tagged corpus) and the population (the POS-tagged corpus) because all detected errors cannot be checked. In the near future, we will apply the proposed method to a dependency tree-tagged corpus and a semantic role tagged corpus.

Detecting and correcting errors in Korean POS-tagged corpora (한국어 품사 부착 말뭉치의 오류 검출 및 수정)

  • Choi, Myung-Gil;Seo, Hyung-Won;Kwon, Hong-Seok;Kim, Jae-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.227-235
    • /
    • 2013
  • The quality of the part-of-speech (POS) annotation in a corpus plays an important role in developing POS taggers. There, however, are several kinds of errors in Korean POS-tagged corpora like Sejong Corpus. Such errors are likely to be various like annotation errors, spelling errors, insertion and/or deletion of unexpected characters. In this paper, we propose a method for detecting annotation errors using error patterns, and also develop a tool for effectively correcting them. Overall, based on the proposed method, we have hand-corrected annotation errors in Sejong POS Tagged Corpus using the developed tool. As the result, it is faster at least 9 times when compared without using any tools. Therefore we have observed that the proposed method is effective for correcting annotation errors in POS-tagged corpus.

Vocabulary Coverage Improvement for Embedded Continuous Speech Recognition Using Part-of-Speech Tagged Corpus (품사 부착 말뭉치를 이용한 임베디드용 연속음성인식의 어휘 적용률 개선)

  • Lim, Min-Kyu;Kim, Kwang-Ho;Kim, Ji-Hwan
    • MALSORI
    • /
    • no.67
    • /
    • pp.181-193
    • /
    • 2008
  • In this paper, we propose a vocabulary coverage improvement method for embedded continuous speech recognition (CSR) using a part-of-speech (POS) tagged corpus. We investigate 152 POS tags defined in Lancaster-Oslo-Bergen (LOB) corpus and word-POS tag pairs. We derive a new vocabulary through word addition. Words paired with some POS tags have to be included in vocabularies with any size, but the vocabulary inclusion of words paired with other POS tags varies based on the target size of vocabulary. The 152 POS tags are categorized according to whether the word addition is dependent of the size of the vocabulary. Using expert knowledge, we classify POS tags first, and then apply different ways of word addition based on the POS tags paired with the words. The performance of the proposed method is measured in terms of coverage and is compared with those of vocabularies with the same size (5,000 words) derived from frequency lists. The coverage of the proposed method is measured as 95.18% for the test short message service (SMS) text corpus, while those of the conventional vocabularies cover only 93.19% and 91.82% of words appeared in the same SMS text corpus.

  • PDF

Syllable-based Probabilistic Models for Korean Morphological Analysis (한국어 형태소 분석을 위한 음절 단위 확률 모델)

  • Shim, Kwangseob
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.642-651
    • /
    • 2014
  • This paper proposes three probabilistic models for syllable-based Korean morphological analysis, and presents the performance of proposed probabilistic models. Probabilities for the models are acquired from POS-tagged corpus. The result of 10-fold cross-validation experiments shows that 98.3% answer inclusion rate is achieved when trained with Sejong POS-tagged corpus of 10 million eojeols. In our models, POS tags are assigned to each syllable before spelling recovery and morpheme generation, which enables more efficient morphological analysis than the previous probabilistic models where spelling recovery is performed at the first stage. This efficiency gains the speed-up of morphological analysis. Experiments show that morphological analysis is performed at the rate of 147K eojeols per second, which is almost 174 times faster than the previous probabilistic models for Korean morphology.

Developing a Sentiment Analysing and Tagging System (감성 분석 및 감성 정보 부착 시스템 구현)

  • Lee, Hyun Gyu;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.377-384
    • /
    • 2016
  • Our goal is to build the system which collects tweets from Twitter, analyzes the sentiment of each tweet, and helps users build a sentiment tagged corpus semi-automatically. After collecting tweets with the Twitter API, we analyzes the sentiments of them with a sentiment dictionary. With the proposed system, users can verify the results of the system and can insert new sentimental words or dependency relations where sentiment information exist. Sentiment information is tagged with the JSON structure which is useful for building or accessing the corpus. With a test set, the system shows about 76% on the accuracy in analysing the sentiments of sentences as positive, neutral, or negative.

Corpus-Based Ambiguity-Driven Learning of Context- Dependent Lexical Rules for Part-of-Speech Tagging (품사태킹을 위한 어휘문맥 의존규칙의 말뭉치기반 중의성주도 학습)

  • 이상주;류원호;김진동;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.1
    • /
    • pp.178-178
    • /
    • 1999
  • Most stochastic taggers can not resolve some morphological ambiguities that can be resolved only by referring to lexical contexts because they use only contextual probabilities based ontag n-grams and lexical probabilities. Existing lexical rules are effective for resolving such ambiguitiesbecause they can refer to lexical contexts. However, they have two limitations. One is that humanexperts tend to make erroneous rules because they are deterministic rules. Another is that it is hardand time-consuming to acquire rules because they should be manually acquired. In this paper, wepropose context-dependent lexical rules, which are lexical rules based on the statistics of a taggedcorpus, and an ambiguity-driven teaming method, which is the method of automatically acquiring theproposed rules from a tagged corpus. By using the proposed rules, the proposed tagger can partiallyannotate an unseen corpus with high accuracy because it is a kind of memorizing tagger that canannotate a training corpus with 100% accuracy. So, the proposed tagger is useful to improve theaccuracy of a stochastic tagger. And also, it is effectively used for detecting and correcting taggingerrors in a manually tagged corpus. Moreover, the experimental results show that the proposed methodis also effective for English part-of-speech tagging.

Generating a Category Set of Words Using a Hierarchical Part-of-speech System and Tagged Corpus

  • Kojima, Takeyuki;Kotani, Yoshiyuki
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.217-226
    • /
    • 2002
  • In this paper, we propose a method of generating a proper categorization of morphemes by giving a hierarchical part-of-speech system and a corpus tagged using this part-of-speech system. Our method use hierarchical information in the part-of-speech system and statistical information in the corpus to generate a category set. The statistical information is based on the context of occurrence of categories. First, we specify the format of given information. Then, we describe an algorithm to generate a proper categorization. Finally, we present the results of our experiments in applying this method. We obtained a moderately proper categorization and found several candidates for improvement .

  • PDF

Building an RST-tagged Corpus and its Classification Scheme for Korean News Texts (한국어 수사구조 분류체계 수립 및 주석 코퍼스 구축)

  • Noh, Eunchung;Lee, Yeonsoo;Kim, YeonWoo;Lee, Do-Gil
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.33-38
    • /
    • 2016
  • 수사구조는 텍스트의 각 구성 성분이 맺고 있는 관계를 의미하며, 필자의 의도는 논리적인 구조를 통해서 독자에게 더 잘 전달될 수 있다. 따라서 독자의 인지적 효과를 극대화할 수 있도록 수사구조를 고려하여 단락과 문장 구조를 구성하는 것이 필요하다. 그럼에도 불구하고 지금까지 수사구조에 기초한 한국어 분류체계를 만들거나 주석 코퍼스를 설계하려는 시도가 없었다. 본 연구에서는 기존 수사구조 이론을 기반으로, 한국어 보도문 형식에 적합한 30개 유형의 분류체계를 정제하고 최소 담화 단위별로 태깅한 코퍼스를 구축하였다. 또한 구축한 코퍼스를 토대로 중심문장을 비롯한 문장 구조의 특징과 분포 비율, 신문기사의 장르적 특성 등을 살펴봄으로써 텍스트에서 응집성의 실현 양상과 구문상의 특징을 확인하였다. 본 연구는 한국어 담화 구문에 적합한 수사구조 분류체계를 설계하고 이를 이용한 주석 코퍼스를 최초로 구축하였다는 점에서 의의를 갖는다.

  • PDF

Semi-Automatic Annotation Tool to Build Large Dependency Tree-Tagged Corpus

  • Park, Eun-Jin;Kim, Jae-Hoon;Kim, Chang-Hyun;Kim, Young-Kill
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.385-393
    • /
    • 2007
  • Corpora annotated with lots of linguistic information are required to develop robust and statistical natural language processing systems. Building such corpora, however, is an expensive, labor-intensive, and time-consuming work. To help the work, we design and implement an annotation tool for establishing a Korean dependency tree-tagged corpus. Compared with other annotation tools, our tool is characterized by the following features: independence of applications, localization of errors, powerful error checking, instant annotated information sharing, user-friendly. Using our tool, we have annotated 100,904 Korean sentences with dependency structures. The number of annotators is 33, the average annotation time is about 4 minutes per sentence, and the total period of the annotation is 5 months. We are confident that we can have accurate and consistent annotations as well as reduced labor and time.

  • PDF

Unsupervised Semantic Role Labeling for Korean Adverbial Case (비지도 학습을 기반으로 한 한국어 부사격의 의미역 결정)

  • Kim, Byoung-Soo;Lee, Yong-Hun;Lee, Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.2
    • /
    • pp.112-122
    • /
    • 2007
  • Training a statistical model for semantic role labeling requires a large amount of manually tagged corpus. However. such corpus does not exist for Korean and constructing one from scratch is a very long and tedious job. This paper suggests a modified algorithm of self-training, an unsupervised algorithm, which trains a semantic role labeling model from any raw corpora. For initial training, a small tagged corpus is automatically constructed iron case frames in Sejong Electronic Dictionary. Using the corpus, a probabilistic model is trained incrementally, which achieves 83.00% of accuracy in 4 selected adverbial cases.